【總結(jié)】第二章第1課時(shí)一、選擇題1.在下列命題中:①若a、b共線,則a、b所在的直線平行;②若a、b所在的直線是異面直線,則a、b一定不共面;③若a、b、c三向量兩兩共面,則a、b、c三向量一定也共面;④已知三向量a、b、c,則空間任意一個(gè)向量p總可
2024-12-03 00:16
【總結(jié)】第二章第2課時(shí)一、選擇題1.下列式子中正確的是()A.a(chǎn)·|a|=a2B.(a·b)2=a2·b2C.(a·b)c=a(b·c)D.|a·b|≤|a|·|b|[答案]D2.已知非零向量a,b不共線,且其模相等
【總結(jié)】數(shù)量積公式巧證垂直問題對于空間兩個(gè)非零向量a,b來說,如果它們的夾角??,ab,那么我們定義它們的數(shù)量積為cos??abab.特別地,當(dāng)兩向量垂直時(shí),0???abab.利用該結(jié)論,可以很好地解決立體幾何中線線垂直或線面垂直的問題.1.證明直線與直線垂直,可以轉(zhuǎn)化為證明這兩條直線上的非零向量的數(shù)量積為零.反之亦成立.
2024-11-20 00:26
【總結(jié)】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實(shí)數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標(biāo)式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標(biāo)式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長度與b
2025-04-04 05:05
【總結(jié)】鎮(zhèn)江市實(shí)驗(yàn)高級中學(xué)楊勇鎮(zhèn)江市第四屆青年教師基本功競賽上課教案例:老鼠由A向西北逃竄,貓?jiān)贐處向正東追去。AB問:貓能否追到老鼠?為什么?結(jié)論:貓的速度再快也沒用,因?yàn)榉较蝈e(cuò)了。引例請各舉出幾個(gè)只有大小和既有大小又有方向的量?閱讀提綱:?向量是如何定義的?向量
2024-11-18 00:48
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點(diǎn)三十三分。,§6平面向量數(shù)量積的坐標(biāo)表示,第二頁,編輯于星期六:點(diǎn)三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點(diǎn)三十三分。,,第四頁,編...
2024-10-22 18:51
【總結(jié)】第二章第2課時(shí)一、選擇題1.設(shè)P(-5,1,-2),A(4,2,-1),若OP→=AB→,則點(diǎn)B應(yīng)為()A.(-1,3,-3)B.(9,1,1)C.(1,-3,3)D.(-9,-1,-1)[答案]A[解析]∵OP→=AB→=OB→-OA→,
【總結(jié)】§3.空間向量的數(shù)乘運(yùn)算知識點(diǎn)一空間向量的運(yùn)算已知ABCD—A′B′C′D′是平行六面體.(1)化簡12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對角線BC′上的34分點(diǎn),設(shè)'MNABADAA???
2024-12-08 01:49
【總結(jié)】第三章間向量與立體幾何§空間向量及其運(yùn)算知識點(diǎn)一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個(gè)點(diǎn)為起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)+2空間向量及其線性運(yùn)算共面向量定理課后知能檢測蘇教版選修2-1一、填空題1.下列命題中真命題的個(gè)數(shù)是________.①空間中任兩個(gè)單位向量必相等;②將空間中所有的單位向量移到同一起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;③若兩個(gè)非零向量a,b滿足a=kb,則
2024-12-05 09:29
【總結(jié)】第一課時(shí)空間向量及其加減與數(shù)乘運(yùn)算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會(huì)用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡單的立體幾何中的問題.教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律.教學(xué)難點(diǎn):由平面向量類比學(xué)習(xí)空間向量.教學(xué)過程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2024-11-19 22:43
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點(diǎn)三十三分。,§2從位移的合成到向量的加法2.2向量的減法,第二頁,編輯于星期六:點(diǎn)三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點(diǎn)三十三分...
2024-10-22 18:50
【總結(jié)】課題:空間向量的標(biāo)準(zhǔn)正交分解與坐標(biāo)表示學(xué)習(xí)目標(biāo):知識與技能:掌握空間直角坐標(biāo)系;及空間向量的坐標(biāo)表示;過程與方法:掌握空間右手直角坐標(biāo)系的概念,會(huì)確定一些簡單幾何體(正方體、長方體)的頂點(diǎn)坐標(biāo);情感態(tài)度與價(jià)值觀:由平面向量的坐標(biāo)運(yùn)算體系推廣到空間向量的坐標(biāo)運(yùn)算體系培養(yǎng)類比推理思想和一般到特殊的辨證思維能力。
【總結(jié)】解及其坐標(biāo)表示lαOP例1在平面內(nèi)的一條直線,如果和這個(gè)平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
2024-11-18 12:14
【總結(jié)】重慶市萬州分水中學(xué)高中數(shù)學(xué)選修2-1《空間向量的數(shù)量積》教案備課時(shí)間教學(xué)課題教時(shí)計(jì)劃1教學(xué)課時(shí)1教學(xué)目標(biāo)1.掌握空間向量的夾角的概念,掌握空間向量的數(shù)量積的概念、性質(zhì)和運(yùn)算律,了解空間向量數(shù)量積的幾何意義;2.掌握空間向量數(shù)量積的坐標(biāo)形式,會(huì)用向量的方法解決有關(guān)垂直、夾角和
2024-12-05 03:08