【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
2025-11-03 16:44
【總結(jié)】課題平面向量數(shù)量積的坐標(biāo)表示、模、夾角教學(xué)目標(biāo)知識與技能理解兩個向量數(shù)量積坐標(biāo)表示的推導(dǎo)過程,過程與方法能根據(jù)向量的坐標(biāo)計算向量的模,情感態(tài)度價值觀并推導(dǎo)平面內(nèi)兩點間的距離公式重點能根據(jù)向量的坐標(biāo)求向量的夾角及判定兩個向量垂直難點能運用數(shù)量積的坐標(biāo)表示進(jìn)行向量數(shù)量積的運算.
2025-11-26 06:47
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角(教案)教學(xué)目標(biāo)1.知識目標(biāo):⑴掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量數(shù)量積的運算;⑵掌握平面向量的模的坐標(biāo)公式以及平面內(nèi)兩點間的距離公式;⑶掌握兩個平面向量的夾角的坐標(biāo)公式;⑷能用平面向量數(shù)量積的坐標(biāo)公式判斷兩個平面向量的垂直關(guān)系;2.能力目標(biāo):⑴培養(yǎng)學(xué)生的動手能力和探索能力;⑵通過平面向量數(shù)量積的數(shù)與
2025-04-17 01:40
【總結(jié)】(二)2.3.2平面向量的坐標(biāo)運算(二)【學(xué)習(xí)要求】1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代
2025-01-13 20:56
【總結(jié)】《平面向量數(shù)量積的坐標(biāo)表示、模、夾角》說課稿 一、教材分析 :平面向量數(shù)量積的坐標(biāo)表示,就是運用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運算,為研究平面中的距離、垂直、角度等問題提供了全新的手段。它把向量...
2025-11-24 02:07
【總結(jié)】平面向量數(shù)量積四大考點解析考點一.考查概念型問題例a、b、c是三個非零向量,則下列命題中真命題的個數(shù)()⑴??baab?ba//?;⑵ba,反向????baab?⑶??bababa???;⑷a=b???bacb?分析
2025-11-10 23:18
【總結(jié)】平面向量數(shù)量積的應(yīng)用平面向量的數(shù)量積及其性質(zhì)是平面向量的重點內(nèi)容,在平面向量中占重要的地位.利用平面向量的數(shù)量積及其性質(zhì)可以處理向量的許多問題.下面舉例歸納說明.一、求向量的長度(模)求向量的長度的依據(jù)是:①2aaa?·;②設(shè)?a(),xy,則a22??xy.例1已知5ab??,向量a與b的夾角為π3,
2025-11-26 06:36
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量數(shù)量積的運算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??????12,12,則下列結(jié)論中正確的是()A.|a|=|b
【總結(jié)】課題:平面向量的數(shù)量積(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握平面向量數(shù)量積的坐標(biāo)表示;2、掌握向量垂直的坐標(biāo)表示的等價條件?!菊n前預(yù)習(xí)】1、(1)已知向量a和b的夾角是3?,|a|=2,|b|=1,則(a+b)2
2025-11-26 00:28
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一、|a2b|≤|a||b|的應(yīng)用若a=(x1,y1),b=(x2,y2),則平面向量的數(shù)量積的性質(zhì)|a2b|≤|a||b|的坐標(biāo)表示為x1x2+y1y2≤2212122222121)(yyxxyxyx????≤(x12+y12)(x22+y22).不等式(x1x2
【總結(jié)】第3課時平面向量的數(shù)量積基礎(chǔ)過關(guān)1.兩個向量的夾角:已知兩個非零向量和,過O點作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時,與;當(dāng)θ=180°時,與;如果與的夾角是90°,我們說與垂直,記作.2.兩個向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【總結(jié)】平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運算1.下列說法正確的有()①向量的坐標(biāo)即此向量終點的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個向量的坐標(biāo)等于它的終點坐標(biāo)減去它的始點坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個B.2個C.3個D.4個解析:向量的坐標(biāo)是其終點坐標(biāo)減去起點對
2025-11-10 17:32
【總結(jié)】第一頁,編輯于星期六:點三十二分。,2.2平面向量的線性運算2.2.1向量加法運算及其幾何意義,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十二分。...
2025-10-13 18:48
【總結(jié)】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2025-11-08 17:33
【總結(jié)】平面向量的數(shù)量積一、知識梳理:?1、平面向量的數(shù)量積?(1)a與b的夾角:?(2)向量夾角的范圍:?(3)向量垂直:[00,1800]abθ共同的起點aOABbθOABOABOABOAB
2025-11-01 03:15