【總結(jié)】第九章 幾何問題的轉(zhuǎn)換解析幾何幾何問題的轉(zhuǎn)換一、基礎(chǔ)知識(shí):在圓錐曲線問題中,經(jīng)常會(huì)遇到幾何條件與代數(shù)條件的相互轉(zhuǎn)化,合理的進(jìn)行幾何條件的轉(zhuǎn)化往往可以起到“四兩撥千斤”的作用,極大的簡化運(yùn)算的復(fù)雜程度,在本節(jié)中,將列舉常見的一些幾何條件的轉(zhuǎn)化。1、在幾何問題的轉(zhuǎn)化
2025-03-25 00:03
【總結(jié)】文科圓錐曲線、右焦點(diǎn),為直線上一點(diǎn),是底角為的等腰三角形,則的離心率為() 【答案】C【命題意圖】本題主要考查橢圓的性質(zhì)及數(shù)形結(jié)合思想,是簡單題.【解析】∵△是底角為的等腰三角形,∴,,∴=,∴,∴=,,焦點(diǎn)在軸上,與拋物線的準(zhǔn)線交于兩點(diǎn),;則的實(shí)軸長為()
2025-06-25 16:46
【總結(jié)】數(shù)學(xué)學(xué)科2012學(xué)年年度論文地址:佛山市順德區(qū)陳村鎮(zhèn)青云中學(xué)姓名:匡德智電話:13790039227圓錐曲線中的四點(diǎn)共圓性質(zhì)的應(yīng)用引理:設(shè)兩條直線()與二次曲線:()有四個(gè)交點(diǎn),則這四個(gè)交點(diǎn)共圓的充要條件是證明:由、組成的曲線即:,所以,經(jīng)過它與的四個(gè)交點(diǎn)
2025-06-22 23:13
【總結(jié)】......關(guān)于圓錐曲線的中點(diǎn)弦問題直線與圓錐曲線相交所得弦中點(diǎn)問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個(gè)熱點(diǎn)問題。這類問題一般有以下三種類型:(1)求中點(diǎn)弦所在直線方程問題;(2)求弦中點(diǎn)的軌跡方程問題;
2025-03-25 00:02
【總結(jié)】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個(gè)重要幾何性質(zhì),一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎(chǔ)知識(shí):1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾
2025-03-25 00:04
【總結(jié)】圓錐曲線過定點(diǎn)問題一、小題自測1.無論取任何實(shí)數(shù),直線必經(jīng)過一個(gè)定點(diǎn),則這個(gè)定點(diǎn)的坐標(biāo)為.2.已知直線;圓,則直線與圓的位置關(guān)系為.二、幾個(gè)常見結(jié)論:滿足一定條件的曲線上兩點(diǎn)連結(jié)所得的直線過定點(diǎn)或滿足一定條件的曲線過定點(diǎn),這構(gòu)成了過定點(diǎn)問題。1、過定點(diǎn)模型:是圓錐曲線上的兩動(dòng)點(diǎn),是一定點(diǎn),其
【總結(jié)】圓錐曲線有關(guān)焦點(diǎn)弦的幾個(gè)公式及應(yīng)用如果圓錐曲線的一條弦所在的直線經(jīng)過焦點(diǎn),則稱此弦為焦點(diǎn)弦。圓錐曲線的焦點(diǎn)弦問題涉及到離心率、直線斜率(或傾斜角)、定比分點(diǎn)(向量)、焦半徑和焦點(diǎn)弦長等有關(guān)知識(shí)。焦點(diǎn)弦是圓錐曲線的“動(dòng)脈神經(jīng)”,集數(shù)學(xué)知識(shí)、思想方法和解題策略于一體,倍受命題人青睞,在近幾年的高考中頻頻亮相,題型多為小題且位置靠后屬客觀題中的壓軸題,也有作為大題進(jìn)行考查的。本文介紹圓錐曲線有關(guān)焦
2025-07-25 12:41
【總結(jié)】《圓錐曲線定義》專題練習(xí)----QCL1.已知橢圓的兩個(gè)焦點(diǎn)為,,且,弦AB過點(diǎn),則△的周長為()A.10 D.2.過雙曲線的右焦點(diǎn)F2有一條弦PQ,|PQ|=7,F1是左焦點(diǎn),那么△F1PQ的周長為()B. C. D.3.為常數(shù),若動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡所在的曲線是()A.橢圓B.
2025-06-07 17:16
【總結(jié)】......圓錐曲線離心率專題訓(xùn)練 1.已知F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),若橢圓上存在點(diǎn)P,使得PF1⊥PF2,則橢圓離心率的取值范圍是( ) A.[,1)B.[,1)C.(0,]D.
【總結(jié)】第九章 圓錐曲線中的存在性問題解析幾何圓錐曲線中的存在性問題一、基礎(chǔ)知識(shí)1、在處理圓錐曲線中的存在性問題時(shí),通常先假定所求的要素(點(diǎn),線,圖形或是參數(shù))存在,并用代數(shù)形式進(jìn)行表示。再結(jié)合題目條件進(jìn)行分析,若能求出相應(yīng)的要素,則假設(shè)成立;否則即判定不存在2、存在性問題常見要素的代數(shù)形式:
【總結(jié)】圓錐曲線復(fù)習(xí)課橢圓雙曲線拋物線幾何條件與兩個(gè)定點(diǎn)的距離的和等于常數(shù)與兩個(gè)定點(diǎn)的距離的差的絕對(duì)值等于常數(shù)與一個(gè)定點(diǎn)和一條定直線的距離相等標(biāo)準(zhǔn)方程圖形頂點(diǎn)坐標(biāo)(±a,0),(0,±b)(±a,0)(0,0))0(12
2025-07-25 03:46
【總結(jié)】專題30圓錐曲線中的最值問題【考情分析】與圓錐曲線有關(guān)的最值和范圍問題,因其考查的知識(shí)容量大、分析能力要求高、區(qū)分度高而成為高考命題者青睞的一個(gè)熱點(diǎn)。江蘇高考試題結(jié)構(gòu)平穩(wěn),題量均勻.每份試卷解析幾何基本上是1道小題和1道大題,平均分值19分,實(shí)際情況與理論權(quán)重基本吻合;涉及知識(shí)點(diǎn)廣.雖然解析幾何的題量不多,分值僅占總分的13%,但涉及到的知識(shí)點(diǎn)分布較廣,覆蓋面較大;注重與其他
2025-03-25 01:53
【總結(jié)】你若想做,總會(huì)找到方法!弦長專題(A組)1,過拋物線y2=4x的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2)兩點(diǎn),若x1+x2=6,那么|AB|等于_______2,過拋物線焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),已知|AB|=
2025-07-25 00:14
【總結(jié)】專題:解圓錐曲線問題常用方法(一)【學(xué)習(xí)要點(diǎn)】解圓錐曲線問題常用以下方法:1、定義法(1)橢圓有兩種定義。第一定義中,r1+r2=2a。第二定義中,r1=ed1r2=ed2。(2)雙曲線有兩種定義。第一定義中,,當(dāng)r1r2時(shí),注意r2的最小值為c-a:第二定義中,r1=ed1,r2=ed2,尤其應(yīng)注意第二定義的應(yīng)用,常常將半徑與“
2025-08-05 03:29
【總結(jié)】Q群675260005專供圓錐曲線中的存在、探索性問題一、考情分析圓錐曲線中的存在性問題、探索問題是高考常考題型之一,它是在題設(shè)條件下探索某個(gè)數(shù)學(xué)對(duì)象(點(diǎn)、線、數(shù)等),解法不一,我們在平時(shí)的教學(xué)中對(duì)這類題目訓(xùn)練較少,因而學(xué)生遇到這類題目時(shí),往往感到無從下手,本文針對(duì)圓錐曲線中這類問題進(jìn)行了探討.二、經(jīng)驗(yàn)分享解決探索性問題的注意事項(xiàng)探索性問題,先假設(shè)存在,推證滿足