【摘要】第九章 圓錐曲線中的存在性問題解析幾何圓錐曲線中的存在性問題一、基礎(chǔ)知識1、在處理圓錐曲線中的存在性問題時,通常先假定所求的要素(點,線,圖形或是參數(shù))存在,并用代數(shù)形式進行表示。再結(jié)合題目條件進行分析,若能求出相應(yīng)的要素,則假設(shè)成立;否則即判定不存在2、存在性問題常見要素的代數(shù)形式:
2025-03-25 00:03
【摘要】圓錐曲線復(fù)習課橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)與兩個定點的距離的差的絕對值等于常數(shù)與一個定點和一條定直線的距離相等標準方程圖形頂點坐標(±a,0),(0,±b)(±a,0)(0,0))0(12
2025-07-25 03:46
【摘要】專題30圓錐曲線中的最值問題【考情分析】與圓錐曲線有關(guān)的最值和范圍問題,因其考查的知識容量大、分析能力要求高、區(qū)分度高而成為高考命題者青睞的一個熱點。江蘇高考試題結(jié)構(gòu)平穩(wěn),題量均勻.每份試卷解析幾何基本上是1道小題和1道大題,平均分值19分,實際情況與理論權(quán)重基本吻合;涉及知識點廣.雖然解析幾何的題量不多,分值僅占總分的13%,但涉及到的知識點分布較廣,覆蓋面較大;注重與其他
2025-03-25 01:53
【摘要】你若想做,總會找到方法!弦長專題(A組)1,過拋物線y2=4x的焦點作直線交拋物線于A(x1,y1),B(x2,y2)兩點,若x1+x2=6,那么|AB|等于_______2,過拋物線焦點的直線交拋物線于A、B兩點,已知|AB|=
2025-07-25 00:14
【摘要】專題:解圓錐曲線問題常用方法(一)【學習要點】解圓錐曲線問題常用以下方法:1、定義法(1)橢圓有兩種定義。第一定義中,r1+r2=2a。第二定義中,r1=ed1r2=ed2。(2)雙曲線有兩種定義。第一定義中,,當r1r2時,注意r2的最小值為c-a:第二定義中,r1=ed1,r2=ed2,尤其應(yīng)注意第二定義的應(yīng)用,常常將半徑與“
2025-08-05 03:29
【摘要】Q群675260005專供圓錐曲線中的存在、探索性問題一、考情分析圓錐曲線中的存在性問題、探索問題是高考??碱}型之一,它是在題設(shè)條件下探索某個數(shù)學對象(點、線、數(shù)等),解法不一,我們在平時的教學中對這類題目訓練較少,因而學生遇到這類題目時,往往感到無從下手,本文針對圓錐曲線中這類問題進行了探討.二、經(jīng)驗分享解決探索性問題的注意事項探索性問題,先假設(shè)存在,推證滿足
【摘要】圓錐曲線的最值、范圍問題與圓錐曲線有關(guān)的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關(guān)系的研究,又對最值范圍問題有所青睞,它能綜合應(yīng)用函數(shù)、三角、不等式等有關(guān)知識,緊緊抓住圓錐曲線的定義進行轉(zhuǎn)化,充分展現(xiàn)數(shù)形結(jié)合、函數(shù)與方程、化歸轉(zhuǎn)化等數(shù)學思想在解題中的應(yīng)用,本文從下面幾個方面闡述該類題型的求解方法,以引起讀者注意.一、利用圓錐曲線定義求最值借助圓錐曲線定義將
2025-03-25 00:04
【摘要】2022年01月圓的推廣飛船軌道為什么斜著切割一個圓柱得到的截線是一個橢圓呢?有關(guān)圓的某些定理在圓錐曲線中的推廣是什么樣的?圓錐曲線在大自然的基本結(jié)構(gòu)中扮演著怎樣的角色?斜切圓柱“數(shù)學是人類文化的重要組成部分……應(yīng)適當反映數(shù)學的歷史、應(yīng)用和發(fā)展趨勢,數(shù)學
2025-01-19 01:18
【摘要】圓錐曲線?解析幾何是在坐標系的基礎(chǔ)上,用坐標表示點、用方程表示點的軌跡——曲線(包括直線)。通過研究方程的性質(zhì),進一步研究曲線的性質(zhì)。也可以說,解析幾何是用代數(shù)的方法研究幾何問題的一門數(shù)學學科。本章是平面解析幾何內(nèi)容中的圓錐曲線部分,是在學生已掌握平面幾何知識與平面直角坐標系、平面向量、兩點距離公式及基本初等函數(shù)、直線與圓的方程等知識的基礎(chǔ)上
2024-11-21 02:39
【摘要】一、單選題(每題6分共36分)1.橢圓的焦距為。()A.5B.3C.4D82.已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線的方程為()A.B.
2025-06-23 07:22
【摘要】?解析幾何的產(chǎn)生?十六世紀以后,由于生產(chǎn)和科學技術(shù)的發(fā)展,天文、力學、航海等方面都對幾何學提出了新的需要。比如,德國天文學家開普勒發(fā)現(xiàn)行星是繞著太陽沿著橢圓軌道運行的,太陽處在這個橢圓的一個焦點上;意大利科學家伽利略發(fā)現(xiàn)投擲物體試驗著拋物線運動的。這些發(fā)現(xiàn)都涉及到圓錐曲線,要研究這些比較復(fù)雜的曲線,原先的一套方法顯然已經(jīng)不適應(yīng)了
2025-08-05 10:19
【摘要】......圓錐曲線的最值、范圍問題與圓錐曲線有關(guān)的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關(guān)系的研究,又對最值范圍問題有所青睞,它能綜合應(yīng)用函數(shù)、三角、不等式等有關(guān)知識,緊緊抓住圓錐曲線的定義進行轉(zhuǎn)
【摘要】......圓錐曲線中的最值問題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個焦點,AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
【摘要】直線與圓錐曲線的位置關(guān)系問題是圓錐曲線的重點和難點,也是每年高考的熱點,其解答過程具有很強的綜合性、復(fù)雜性和規(guī)律性。解答此類問題需要把握弦長公式,中點坐標公式,圓錐曲線的簡單幾何性質(zhì),韋達定理的運用,以及轉(zhuǎn)化與化歸思想及其應(yīng)用.已知直線和圓錐曲線的方程,如何判斷直線與圓錐曲線的位置關(guān)系?直線與
2025-07-23 12:45