【總結(jié)】2表127名糖尿病人的血糖及有關(guān)變量的測量結(jié)果總膽固醇甘油三酯胰島素糖化血紅蛋白血糖(mmol/L)(mmol/L)(?U/ml)(%)(mmol/L)序號iX1X2X3X4Y15.681.90
2025-05-15 01:35
【總結(jié)】1第九章多元線性回歸的異方差問題一、異方差及其影響二、異方差的發(fā)現(xiàn)和判斷三、異方差的解決方法2一、異方差及其影響1、異方差的定義:對于多元線性回歸模型,如果隨機擾動項的方差并非是不變的常數(shù),則稱為存在異方差(heteroscedasticity)。異方差可以表示為?;?/span>
2025-05-15 01:50
【總結(jié)】第三章經(jīng)典單方程計量經(jīng)濟學模型:多元線性回歸模型MultipleLinearRegressionModel本章內(nèi)容?多元線性回歸模型概述?多元線性回歸模型的參數(shù)估計?多元線性回歸模型的統(tǒng)計檢驗?多元線性回歸模型的預測?可化為線性的非線性模型?受約束回歸§多元線性回歸模型概述
2025-05-13 00:15
【總結(jié)】第3章多元線性回歸多元線性回歸模型回歸參數(shù)的估計參數(shù)估計量的性質(zhì)回歸方程的顯著性檢驗中心化和標準化相關(guān)陣與偏相關(guān)系數(shù)本章小結(jié)與評注多元線性回歸模型一、多元線性回歸模型的一般形式y(tǒng)=β0+β1x1+β2x2+…+βpxp+ε?????2)v
2025-07-20 10:12
【總結(jié)】第三章多元線性回歸模型**?多元線性回歸模型是我們課程的重點,原因在于:多元線性回歸模型應用非常普遍;原理和方法是理解更復雜計量經(jīng)濟學模型的基礎(chǔ);內(nèi)容較為豐富。?從而,我們應不遺余力地學,甚至是不遺余力地背!?。”菊轮饕獌?nèi)容?多元線性回歸模型的描述?參數(shù)?
2025-05-14 23:12
【總結(jié)】§多元線性回歸模型的預測一、E(Y0)的置信區(qū)間二、Y0的置信區(qū)間對于樣本回歸函數(shù)βXY???給定樣本以外的解釋變量的觀測值X0=(1,X01,X02,…,X0k),可以得到被解釋變量的預測值:βX??00?Y它可以是總體均值E(Y0)或個值
2025-05-14 23:13
【總結(jié)】第二講、回歸分析?回歸分析的目的:依靠觀察數(shù)據(jù)建立變量間的關(guān)系,分析數(shù)據(jù)規(guī)律。?回歸分析的內(nèi)容:回歸分析?本章內(nèi)容:線性回歸分析。?基本要求:使學生掌握線性回歸分析的基本方法與步
2025-01-20 08:55
【總結(jié)】第三節(jié)多元線性回歸模型的統(tǒng)計檢驗TSSRSSESS??22()iiTSSYYy??????總=離差平方和22??()iiRSSYYy???????回歸平方和一、擬合優(yōu)度檢驗總離差平方和的分解:1、可決系數(shù)與調(diào)整的可決系數(shù)22?()iiiE
【總結(jié)】§多元線性回歸模型的估計估計方法:OLS、ML或者MM一、普通最小二乘估計*二、最大或然估計*三、矩估計四、參數(shù)估計量的性質(zhì)五、樣本容量問題六、估計實例一、普通最小二乘估計對于隨機抽取的n組觀測值(Yi,Xji),i=1,2,,n,j=0,1,2,
【總結(jié)】1矩陣代數(shù)概述2矩陣(matrix)就是一個矩形數(shù)組。m?n矩陣就有m行和n列。m稱為行維數(shù),n稱為列維數(shù)??杀硎緸椋壕仃??方陣:具有相同的行數(shù)和列數(shù)的矩陣。一個方陣的維數(shù)就是其行數(shù)或列數(shù)。?行向量:一個1?m的矩陣被稱為一個(m維)行向量。
2025-05-11 01:09
【總結(jié)】1第三章多元線性回歸模型(2)一、基本概念回顧二、基本假設三、檢驗四、自變量關(guān)系2一,概念:1、偏回歸系數(shù):?1、與雙變量模型一樣分為確定性成分和隨機性成分。?2、YXU也分別為被解釋變量、解釋變量隨機擾動項。?3不同的是回歸系數(shù)我們稱之為偏回歸系數(shù)3偏回歸系
2025-05-01 18:18
【總結(jié)】?參數(shù)估計量的區(qū)間估計?預測值的區(qū)間估計?受約束回歸§單方程線性模型的區(qū)間估計IntervalEstimationofMultipleLinearRegressionModel一、參數(shù)估計量的置信區(qū)間人們經(jīng)常說:“通過建立生產(chǎn)函數(shù)模型,得到資本的產(chǎn)出彈性是”,“通過建立消費函數(shù)模
【總結(jié)】第三章多元線性回歸模型?多元線性回歸模型?多元線性回歸模型的參數(shù)估計?多元線性回歸模型的假設檢驗?實例§多元線性回歸模型一、多元線性回歸模型二、多元線性回歸模型的基本假定一、多元線性回歸模型多元線性回歸模型:表現(xiàn)在線性回歸模型中的解釋變量有多個。一般表現(xiàn)形式
2025-01-07 05:36
【總結(jié)】多元線性回歸?多元線性回歸是簡單線性回歸的直接推廣,其包含一個因變量和二個或二個以上的自變量。?簡單線性回歸是研究一個因變量(Y)和一個自變量(X)之間數(shù)量上相互依存的線性關(guān)系。而多元線性回歸是研究一個因變量(Y)和多個自變量(Xi)之間數(shù)量上相互依存的線性關(guān)系。?簡單線性回歸的大部分內(nèi)容可用于多元回歸,因其基本概念是一樣
2025-05-11 02:34
【總結(jié)】1第三章多元線性回歸模型2教學目的、要求:通過第三章的學習,要求學生了解多元線性回歸模型產(chǎn)生的背景;掌握多元線性回歸模型的古典假定;用普通最小二乘法對二元線性模型的參數(shù)估計,參數(shù)的解釋;參數(shù)最小二乘估計的統(tǒng)計性質(zhì);理解多元可決系數(shù)(判定系數(shù))、修正的可決系數(shù)(判定系數(shù))的概念及其關(guān)系;掌握用F檢驗
2025-08-20 12:47