【總結(jié)】......橢圓的離心率專題訓(xùn)練(帶詳細解析)一.選擇題(共29小題)1.(2015?濰坊模擬)橢圓的左右焦點分別為F1,F(xiàn)2,若橢圓C上恰好有6個不同的點P,使得△F1F2P為等腰三角形,則橢圓C的離心率的取值范圍是(
2025-03-25 04:50
【總結(jié)】......定點、定直線、定值專題1、已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)若直線與橢圓相交于,兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂
2025-03-25 00:03
【總結(jié)】........解析幾何中的定點定值問題考綱解讀:定點定值問題是解析幾何解答題的考查重點。此類問題定中有動,動中有定,并且常與軌跡問題,曲線系問題等相結(jié)合,深入考查直線的圓,圓錐曲線,直線和圓錐曲線位置關(guān)系等相關(guān)知識??疾閿?shù)形結(jié)合,分類討論,化歸與轉(zhuǎn)化,函數(shù)和方
2025-03-25 07:47
【總結(jié)】........解析幾何中的定值定點問題(一)一、定點問題【例1】.已知橢圓:的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.⑴求橢圓C的方程;⑵設(shè),、是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,求直線的斜率的取值范圍;
【總結(jié)】專題:橢圓的離心率一,利用定義求橢圓的離心率(或)1,已知橢圓的長軸長是短軸長的2倍,則橢圓的離心率2,橢圓的離心率為,則[解析]當(dāng)焦點在軸上時,;當(dāng)焦點在軸上時,,綜上或33,已知橢圓的焦距、短軸長、長軸長成等差數(shù)列,則橢圓的離心率是4,已知m,n,m+n成等差數(shù)列,m,n,mn成等比數(shù)列,則橢圓的離心率為
2025-03-24 05:55
【總結(jié)】破解橢圓中最值問題的常見策略浬浦中學(xué)蔡明有關(guān)圓錐曲線的最值問題,在近幾年的高考試卷中頻頻出現(xiàn),在各種題型中均有考查,其中以解答題為重,在平時的高考復(fù)習(xí)需有所重視。圓錐曲線最值問題具有綜合性強、涉及知識面廣而且常含有變量的一類難題,也是教學(xué)中的一個難點。要解決這類問題往往利用函數(shù)與方程思想、數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸等數(shù)學(xué)思想方
2025-08-26 13:09
【總結(jié)】橢圓的離心率專題訓(xùn)練一.選擇題(共29小題)1.橢圓的左右焦點分別為F1,F(xiàn)2,若橢圓C上恰好有6個不同的點P,使得△F1F2P為等腰三角形,則橢圓C的離心率的取值范圍是( ?。〢. B. C. D. 2.在區(qū)間[1,5]和[2,4]分別取一個數(shù),記為a,b,則方程表示焦點在x軸上且離心率小于的橢圓的概率為( ?。〢. B. C. D. 3.已知橢圓(a>b>0)上一點A
2025-04-17 04:41
【總結(jié)】課時作業(yè)(八)一、選擇題1.(2015·人大附中月考)焦點在x軸上,短軸長為8,離心率為的橢圓的標(biāo)準(zhǔn)方程是( )A.+=1 B.+=1C.+=1 D.+=1【解析】 本題考查橢圓的標(biāo)準(zhǔn)方程.由題意知2b=8,得b=4,所以b2=a2-c2=16,又e==,解得c=3,a=5,又焦點在x軸上,故橢圓的標(biāo)準(zhǔn)方程為+=1,故選C.【答案】 C2.
2025-03-25 04:51
【總結(jié)】WORD資料可編輯專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點,使得為定值;并求出該定點的坐標(biāo).【答案】(1
2025-04-17 12:58
【總結(jié)】牦牛產(chǎn)業(yè)發(fā)展試點定點屠宰場技改項目可行性研究報告牦牛產(chǎn)業(yè)發(fā)展試點定點屠宰場技改項目可行性研究報告目錄第一章總論 1 1申請報告編制依據(jù) 1 2第二章項目單位的基本情況和財務(wù)狀況 6項目單位的基本情況 6項目單位財務(wù)狀況 7第三章項目的基本情況 8 8市場分析及預(yù)測
2025-05-13 18:45
【總結(jié)】......專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)證明:在軸上存在定點,使得為定
2025-04-17 13:05
【總結(jié)】......圓錐曲線習(xí)題——雙曲線1.如果雙曲線=1上一點P到雙曲線右焦點的距離是2,那么點P到y(tǒng)軸的距離是()(A) (B) (C) (D)2.已知雙曲線C∶>0,b>0),以C的右焦點為圓心且與C的漸近線相切的圓的半
2025-06-23 15:22
【總結(jié)】絕對值專題講義【知識點整理】絕對值的幾何意義:.絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.注意:①取絕對值也是一種運算,運算符號是“”,求一個數(shù)的絕對值,就是根據(jù)性質(zhì)去掉絕對值符號.②絕對值的性質(zhì):一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);的絕對值是.③絕對值具有非負性,取絕對值的結(jié)果總是正數(shù)或0.
2025-03-25 07:12
【總結(jié)】一、轉(zhuǎn)移代入法這個方法又叫相關(guān)點法或坐標(biāo)代換法.即利用動點P’(x’,y’)是定曲線F(x,y)=0上的動點,另一動點P(x,y)依賴于P’(x’,y’),那么可尋求關(guān)系式x’=f(x,y),y’=g(x,y)后代入方程F(x’,y’)=0中,得到動點P的軌跡方程例1:已知點A(3,0),點P在圓x2+y2=1的上半圓周上(即y&g
2025-10-31 01:17
【總結(jié)】專題 最值問題【考點聚焦】考點1:向量的概念、向量的加法和減法、向量的坐標(biāo)運算、平面向量的數(shù)量積.考點2:解斜三角形.考點3:線段的定比分點、平移.考點4:向量在平面解析幾何、三角、復(fù)數(shù)中的運用.考點5:向量在物理學(xué)中的運用.【自我檢測】1、求函數(shù)最值的方法:配方法,單調(diào)性法,均值不等式法,導(dǎo)數(shù)法,判別式法,三角函數(shù)有界性,圖象法, 2、求幾類重要函數(shù)
2025-08-04 10:11