【總結(jié)】橢圓、雙曲線、拋物線綜合測(cè)試題一選擇題(本大題共12小題,每題5分,,只有一項(xiàng)是符合要求的)1設(shè)雙曲線的一個(gè)焦點(diǎn)為,則雙曲線的離心率為().AB2CD2橢圓的左、右焦點(diǎn)分別為,一直線經(jīng)過交橢圓于、兩點(diǎn),則的周長(zhǎng)為()A32B16C8D4
2025-03-25 04:50
【總結(jié)】圓錐曲線練習(xí)題(文科)一、選擇題(本大題共12小題,每小題5分,共60分)1.已知拋物線的準(zhǔn)線方程為x=-7,則拋物線的標(biāo)準(zhǔn)方程為( )A.x2=-28y B.y2=28xC.y2=-28x D.x2=28y2.設(shè)P是橢圓+=1上的點(diǎn).若F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),則|PF1|+|PF2|等于( )A.4B.5C.8
【總結(jié)】......雙曲線及其標(biāo)準(zhǔn)方程習(xí)題?一、單選題(每道小題4分共56分)1.命題甲:動(dòng)點(diǎn)P到兩定點(diǎn)A、B距離之差│|PA|-|PB|│=2a(a0);命題乙;P點(diǎn)軌跡是雙曲線,則命題甲是命題乙的
2025-06-23 22:40
【總結(jié)】......學(xué)習(xí)參考雙曲線專題練習(xí)題型一雙曲線的定義1、(2022湖南,文4理2)如果雙曲線上一點(diǎn)P到右焦點(diǎn)的距離等于123??yx,那么點(diǎn)P到右準(zhǔn)線的距離是()3A、 B、13
【總結(jié)】橢圓的定義、性質(zhì)及標(biāo)準(zhǔn)方程1.橢圓的定義:⑴第一定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距。⑵第二定義:動(dòng)點(diǎn)到定點(diǎn)的距離和它到定直線的距離之比等于常數(shù),則動(dòng)點(diǎn)的軌跡叫做橢圓。定點(diǎn)是橢圓的焦點(diǎn),定直線叫做橢圓的準(zhǔn)線,常數(shù)叫做橢圓的離心率。說明:①若常數(shù)等于,則動(dòng)點(diǎn)軌跡是線段。②若常數(shù)小于,則動(dòng)點(diǎn)
2025-08-10 15:59
2025-07-25 00:12
【總結(jié)】直線與橢圓:(2)弦長(zhǎng)問題||1||2akAB????(3)弦中點(diǎn)問題(4)經(jīng)過焦點(diǎn)的弦的問題(1)直線與橢圓位置關(guān)系韋達(dá)定理或設(shè)點(diǎn)作差法0___??||)1(1||//2akAB????OABSkkkxyyx??????,求)若(的范圍;點(diǎn),求)若直
2025-09-25 18:53
【總結(jié)】題型一、求橢圓的標(biāo)準(zhǔn)方程例1.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是、,橢圓上一點(diǎn)到兩焦點(diǎn)距離的和等于;(2)兩個(gè)焦點(diǎn)的坐標(biāo)分別是、,并且橢圓經(jīng)過點(diǎn);(3)焦距為6,;(4)橢圓經(jīng)過兩點(diǎn),。例2、(1)與圓C1:(x+3)2+y2=1外切,且與圓C2:(x-3)2+y2=81內(nèi)切的動(dòng)圓圓心P的軌跡方程為______________.(2)已知橢
2025-03-24 23:26
【總結(jié)】......《雙曲線》練習(xí)題一、選擇題:1.已知焦點(diǎn)在x軸上的雙曲線的漸近線方程是y=±4x,則該雙曲線的離心率是( A )A. B.C.D.2.中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲
2025-06-23 15:22
【總結(jié)】:★★★★★知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內(nèi)一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和等于常數(shù),這個(gè)動(dòng)點(diǎn)的軌跡叫橢圓。這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫作橢圓的焦距。注意:若,則動(dòng)點(diǎn)的軌跡為線段;若,則動(dòng)點(diǎn)的軌跡無圖形。二、橢圓的方程1、橢圓的標(biāo)準(zhǔn)方程(端點(diǎn)為a、b,焦點(diǎn)為c)(1)當(dāng)焦點(diǎn)在軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:,其中;(2)當(dāng)焦點(diǎn)
2025-05-31 08:15
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》橢圓與雙曲線的離心率專題練習(xí)導(dǎo)學(xué)案蘇教版選修1-11.過雙曲線M:2221yxb??的左頂點(diǎn)A作斜率為1的直線l,若l與雙曲線M的兩條漸近線分別相交于B、C,且|AB|=|BC|,則雙曲線M的離心率是()A.10B.5
2024-11-19 17:31
【總結(jié)】雙曲線知識(shí)點(diǎn)一.雙曲線的定義及雙曲線的標(biāo)準(zhǔn)方程:1雙曲線定義:(1)第一定義:到兩個(gè)定點(diǎn)F1與F2的距離之差的絕對(duì)值等于定長(zhǎng)2a(<|F1F2|)的點(diǎn)的軌跡((為常數(shù)))這兩個(gè)定點(diǎn)叫雙曲線的焦點(diǎn).注意:(1)距離之差的絕對(duì)值.(2)2a<|F1F2|,|MF1|-|MF2|=2a時(shí),曲線僅表示焦點(diǎn)F2所對(duì)應(yīng)的一支;當(dāng)|MF1|-|MF2|=-2a時(shí),曲線僅表示焦點(diǎn)F1所對(duì)應(yīng)的一支;
2025-07-22 19:17
【總結(jié)】《雙曲線》練習(xí)題一、選擇題:1.已知焦點(diǎn)在x軸上的雙曲線的漸近線方程是y=±4x,則該雙曲線的離心率是( A )A. B.C.D.2.中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的實(shí)軸與虛軸相等,一個(gè)焦點(diǎn)到一條漸近線的距離為,則雙曲線方程為( B?。〢.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2= D.x2﹣y2=3.在平面直角
2025-06-23 15:36
【總結(jié)】1.【2017課標(biāo)1,理10】已知F為拋物線C:y2=4x的焦點(diǎn),過F作兩條互相垂直的直線l1,l2,直線l1與C交于A、B兩點(diǎn),直線l2與C交于D、E兩點(diǎn),則|AB|+|DE|的最小值為A.16B.14C.12D.10【答案】A2.【2017課標(biāo)II,理9】若雙曲線C:221xya
2024-11-26 00:16
【總結(jié)】《雙曲線》練習(xí)一、選擇題:1.雙曲線的焦距為()A.3 B.4 C.3 D.42.若雙曲線的一個(gè)焦點(diǎn)是,則k等于()A. B. C. D.3.雙曲線虛半軸長(zhǎng)為,焦距為6,則雙曲線離心率是 () A. B. C. D.4.過點(diǎn)P(2,-2)且與-y2=1有相同漸近線的雙曲線方程是 ( )
2025-08-17 05:05