【總結】11、不定積分的概念與性質(zhì)2、換元積分法3、分部積分法4、有理函數(shù)的積分第五章不定積分2§不定積分的概念與性質(zhì)1、不定積分的概念2、不定積分的性質(zhì)3、基本積分表3一、概念41、原函數(shù)例如,cos)(sinxx??定義1若在
2025-08-05 07:00
【總結】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結】定義1設函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當極限存在
2025-07-22 11:10
【總結】CHAPTER3THEDERIVATIVE微積分學的創(chuàng)始人:德國數(shù)學家Leibniz微分學導數(shù)導數(shù)思想最早由法國數(shù)學家Ferma在研究極值問題中提出.英國數(shù)學家Newton?TwoProblemswithOneThemeTangentLines&SecantLin
2025-02-21 15:59
【總結】微積分導學——微積分的產(chǎn)生、應用、特點,學習微積分的目的、意義和方法。1/20§1為什么要學習微積分微積分是高等學校中經(jīng)濟類、理工類專業(yè)學生必修的重要基礎理論課程。數(shù)學主要是研究現(xiàn)實世界中的數(shù)量關系與空間形式。在現(xiàn)實世界中,一切事物都在不斷地變化著,并遵循量變到質(zhì)變的規(guī)律。凡是研究量的大小、量
2024-11-03 21:17
【總結】1嬡計艘脊鍬藤殃雖薜腈唱瀲鍘苧晝妾薟革肥堰鏡膳蕕微積分復習嘸篋娑虬岳冶砂崆粗蓯妥七昵鉻豁薇甲脖滁枘3提綱?考試相關?學習內(nèi)容串講?一些作業(yè)中的問題?一些難點綬河概乖螂不嵫嘯痣癱莽憊瑯墳櫪屙林登寤賺米最猗戲巨凇盼幺跽癔椽樂智臚總亭渥剪4復習備考1-網(wǎng)絡輔助
【總結】1多元函數(shù)的微積分主要內(nèi)容:一.多元函數(shù)的概念二.二元函數(shù)的極限和連續(xù)三.偏導數(shù)的概念及簡單計算四.全微分五.空間曲線的切線與法平面六.曲面的切平面與法線七.多元函數(shù)的極值2設D是平面上的一個點集.如果對于每個點P(x,y)?D,變量z按照一定法則總有確定的值和它對應,
2025-04-28 23:40
【總結】第二章極限與連續(xù)函數(shù)是現(xiàn)代數(shù)學的基本概念之一,是高等數(shù)學的主要研究對象.極限概念是微積分的理論基礎,極限方法是微積分的基本分析方法,因此,掌握、運用好極限方法是學好微積分的關鍵.連續(xù)是函數(shù)的一個重要性態(tài).本章將介紹極限與連續(xù)的基本知識和有關的基本方法,為今后的學習打下必要的基礎.二、數(shù)列
2025-04-29 01:42
【總結】一、問題的提出二、積分上限函數(shù)及其導數(shù)三、牛頓-萊布尼茨公式四、小結思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結】CHAPTER4THEDEFINITEINTEGRAL一、原函數(shù)與不定積分的概念機動目錄上頁下頁返回結束定義1.若在區(qū)間I上定義的兩個函數(shù)F(x)及f(x)滿足在區(qū)間I上的一個原函數(shù).則稱F(x)為f(x)定理.存在原函
2025-01-16 09:07
【總結】微積分基本定理(1)2020年12月24日星期四定積分的定義:一般地,設函數(shù)f(x)在區(qū)間[a,b]上有定義,將區(qū)間[a,b]等分成n個小區(qū)間,每個小區(qū)的長度為,在每個小區(qū)間上取一點,依次為x1,x2,…….xi,….xn,作和如果無限趨近于
2024-11-17 15:36
【總結】旋轉(zhuǎn)體就是由一個平面圖形繞這平面內(nèi)一條直線旋轉(zhuǎn)一周而成的立體.這直線叫做旋轉(zhuǎn)軸.圓柱圓錐圓臺二、體積1.旋轉(zhuǎn)體的體積一般地,如果旋轉(zhuǎn)體是由連續(xù)曲線)(xfy?、直線ax?、bx?及x軸所圍成的曲邊梯形繞x軸旋轉(zhuǎn)一周而成的立體,體積為多少?取積分變量為x,],[bax?在],[
2025-04-21 03:33
【總結】第四節(jié)定積分與微積分基本定理(理)重點難點重點:了解定積分的概念,能用定義法求簡單的定積分,用微積分基本定理求簡單的定積分.難點:用定義求定積分知識歸納1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0x1&l
2024-12-07 18:51
【總結】二、收斂數(shù)列的性質(zhì)一、數(shù)列極限的定義第一章函數(shù)與極限“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術:播放——劉徽一、概念的引入R正六邊形的面積1A正十二邊形的面積2A????正邊形的面積126??nnA??,
2025-04-29 00:54
【總結】二、高階導數(shù)的運算法則第三節(jié)一、高階導數(shù)的概念機動目錄上頁下頁返回結束高階導數(shù)第二章一、高階導數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運動機動目錄上頁下頁返回結束定義.若函數(shù)
2025-04-29 01:58