【總結(jié)】微積分基本定理(1)2020年12月24日星期四定積分的定義:一般地,設(shè)函數(shù)f(x)在區(qū)間[a,b]上有定義,將區(qū)間[a,b]等分成n個小區(qū)間,每個小區(qū)的長度為,在每個小區(qū)間上取一點,依次為x1,x2,…….xi,….xn,作和如果無限趨近于
2024-11-17 15:36
【總結(jié)】2021/11/10海軍航空工程學(xué)院應(yīng)用數(shù)學(xué)研究所時寶微積分的發(fā)展?Archimedes→Newton和Leibniz(1900多年)2021/11/10海軍航空工程學(xué)院應(yīng)用數(shù)學(xué)研究所時寶微積分的發(fā)展?微積分學(xué)是微分學(xué)和積分學(xué)的總稱??陀^世界的一切事物,小至粒子,大至宇宙,始終都在運(yùn)動和變化著。因此在數(shù)學(xué)中引入變量的概念后,就有可
2025-01-04 09:08
【總結(jié)】第四節(jié)定積分與微積分基本定理(理)重點難點重點:了解定積分的概念,能用定義法求簡單的定積分,用微積分基本定理求簡單的定積分.難點:用定義求定積分知識歸納1.定積分的定義如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),用分點a=x0x1&l
2024-12-07 18:51
【總結(jié)】CHAPTER3THEDERIVATIVE微積分學(xué)的創(chuàng)始人:德國數(shù)學(xué)家Leibniz微分學(xué)導(dǎo)數(shù)導(dǎo)數(shù)思想最早由法國數(shù)學(xué)家Ferma在研究極值問題中提出.英國數(shù)學(xué)家Newton?TwoProblemswithOneThemeTangentLines&SecantLin
2025-02-21 15:59
【總結(jié)】微積分導(dǎo)學(xué)——微積分的產(chǎn)生、應(yīng)用、特點,學(xué)習(xí)微積分的目的、意義和方法。1/20§1為什么要學(xué)習(xí)微積分微積分是高等學(xué)校中經(jīng)濟(jì)類、理工類專業(yè)學(xué)生必修的重要基礎(chǔ)理論課程。數(shù)學(xué)主要是研究現(xiàn)實世界中的數(shù)量關(guān)系與空間形式。在現(xiàn)實世界中,一切事物都在不斷地變化著,并遵循量變到質(zhì)變的規(guī)律。凡是研究量的大小、量
2024-11-03 21:17
【總結(jié)】1嬡計艘脊鍬藤殃雖薜腈唱瀲鍘苧晝妾薟革肥堰鏡膳蕕微積分復(fù)習(xí)嘸篋娑虬岳冶砂崆粗蓯妥七昵鉻豁薇甲脖滁枘3提綱?考試相關(guān)?學(xué)習(xí)內(nèi)容串講?一些作業(yè)中的問題?一些難點綬河概乖螂不嵫嘯痣癱莽憊瑯墳櫪屙林登寤賺米最猗戲巨凇盼幺跽癔椽樂智臚總亭渥剪4復(fù)習(xí)備考1-網(wǎng)絡(luò)輔助
【總結(jié)】微積分的創(chuàng)立是人類精神的最高勝利?!鞲袼埂蹲匀晦q證法》目錄微積分的主要內(nèi)容微積分發(fā)展史牛頓和萊布尼茨主要內(nèi)容微積分學(xué)是微分學(xué)(DifferentialCalculs)和積分學(xué)(IntegralCalculs)統(tǒng)稱,英文簡稱Calculs,意為計算。微分學(xué)
2024-12-29 12:26
【總結(jié)】1多元函數(shù)的微積分主要內(nèi)容:一.多元函數(shù)的概念二.二元函數(shù)的極限和連續(xù)三.偏導(dǎo)數(shù)的概念及簡單計算四.全微分五.空間曲線的切線與法平面六.曲面的切平面與法線七.多元函數(shù)的極值2設(shè)D是平面上的一個點集.如果對于每個點P(x,y)?D,變量z按照一定法則總有確定的值和它對應(yīng),
2025-04-28 23:40
【總結(jié)】第二章極限與連續(xù)函數(shù)是現(xiàn)代數(shù)學(xué)的基本概念之一,是高等數(shù)學(xué)的主要研究對象.極限概念是微積分的理論基礎(chǔ),極限方法是微積分的基本分析方法,因此,掌握、運(yùn)用好極限方法是學(xué)好微積分的關(guān)鍵.連續(xù)是函數(shù)的一個重要性態(tài).本章將介紹極限與連續(xù)的基本知識和有關(guān)的基本方法,為今后的學(xué)習(xí)打下必要的基礎(chǔ).二、數(shù)列
2025-04-29 01:42
【總結(jié)】旋轉(zhuǎn)體就是由一個平面圖形繞這平面內(nèi)一條直線旋轉(zhuǎn)一周而成的立體.這直線叫做旋轉(zhuǎn)軸.圓柱圓錐圓臺二、體積1.旋轉(zhuǎn)體的體積一般地,如果旋轉(zhuǎn)體是由連續(xù)曲線)(xfy?、直線ax?、bx?及x軸所圍成的曲邊梯形繞x軸旋轉(zhuǎn)一周而成的立體,體積為多少?取積分變量為x,],[bax?在],[
2025-04-21 03:33
【總結(jié)】?xxd2cosCx?2sin解決方法將積分變量換成令xt2???xxd2costtdcos21??Ct??sin21Cx??2sin21????x2sinx2cos????xxdcosCx?sinx2cos2.2x因為?xd)d(221x
2025-08-05 07:16
【總結(jié)】問題???dxxex解決思路利用兩個函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計算.例1求積分.
2025-07-22 11:11
【總結(jié)】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結(jié)】例解0)0()(lim)0(0?????xfxffx)100()2)(1(lim0?????xxxx?!100?利用導(dǎo)數(shù)定義求函數(shù)在某點處的導(dǎo)數(shù)1.某些簡單函數(shù)在某點處的導(dǎo)數(shù)用導(dǎo)數(shù)定義求有時很方便例解0)0()(lim)0(0?????xfxffxx
2024-10-16 21:13
【總結(jié)】二、收斂數(shù)列的性質(zhì)一、數(shù)列極限的定義第一章函數(shù)與極限“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1、割圓術(shù):播放——劉徽一、概念的引入R正六邊形的面積1A正十二邊形的面積2A????正邊形的面積126??nnA??,
2025-04-29 00:54