【總結(jié)】1§3分部積分法定理若????uxvx與可導(dǎo),不定積分????uxvxdx??存在,則也存在,并有????uxvxdx??????????????,uxvxdxuxvxuxvxdx??????證明:????????
2025-08-23 14:16
【總結(jié)】數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)2010級畢業(yè)論文不等式證明的積分法是利用積分的定義,性質(zhì),以及用一些特殊的積分不等式來證明不等式。定積的概念例1設(shè)在連續(xù),證明證明將區(qū)間進(jìn)行等分,取因為兩邊取對數(shù)得兩邊在時取極限得積分中值定理法積分中值定理如果函數(shù)在上連續(xù),則在內(nèi)至少存在一點,使得例2試證當(dāng)時,.證明因為
2025-07-26 09:48
【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【總結(jié)】第四節(jié)高階導(dǎo)數(shù)一高階導(dǎo)數(shù)的定義二高階導(dǎo)數(shù)的求法三萊布尼茲公式四小結(jié)問題:變速直線運動的加速度dtdststv???)()(則速度為設(shè)),(tss?.])([)()(??????tstvtava,的變化率對時間是速度加速度t?.)())(()()(lim))(()()(0
2025-05-13 02:30
【總結(jié)】1.計算下列定積分:⑴;【解法一】應(yīng)用牛頓-萊布尼茲公式。【解法二】應(yīng)用定積分換元法令,則,當(dāng)從單調(diào)變化到時,從單調(diào)變化到,于是有。⑵;【解法一】應(yīng)用牛頓-萊布尼茲公式?!窘夥ǘ繎?yīng)用定積分換元法令,則,當(dāng)從單調(diào)變化到1時,從1單調(diào)變化到16,于是有。⑶;【解法一】應(yīng)用牛頓-萊布尼茲公式?!窘夥ǘ繎?yīng)用定積分
2025-08-05 05:32
【總結(jié)】變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為?21)(TTdttv設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-22 11:18
【總結(jié)】習(xí)題四A1用積分公式直接求下列不定積分。(1)cxxxdxxxxdxxxxx???????????????22123233421829)49(149(2)cxxdxxxdxxxx?????????21252123252)()1((3)cxxdxxxdxxxx???????????arc
2025-01-09 08:39
【總結(jié)】1-1
2025-01-09 08:40
【總結(jié)】習(xí)題1—1解答1.設(shè),求解;2.設(shè),證明:3.求下列函數(shù)的定義域,并畫出定義域的圖形:(1)(2)(3)(4)yx11-1-1O解(1)yx11-1-1O(2)yx-a-bcOzab
2025-06-20 03:33
【總結(jié)】第五節(jié)隱函數(shù)及參數(shù)方程確定函數(shù)的導(dǎo)數(shù)一隱函數(shù)求導(dǎo)法二對數(shù)求導(dǎo)法三參數(shù)方程確定函數(shù)的導(dǎo)數(shù)四小結(jié):.稱為隱函數(shù)所確定的函數(shù)由二元方程)(),(xyyyxF?形式稱為顯函數(shù).)(xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?如何求導(dǎo)?
2025-07-23 17:58
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-22 11:10
【總結(jié)】微積分Ⅰ1第九章重積分§二重積分的計算一、利用直角坐標(biāo)計算二重積分二、利用極坐標(biāo)計算二重積分三、小結(jié)微積分Ⅰ2第九章重積分一、利用直角坐標(biāo)計算二重積分bxa??),()(21xyx????)(2xy??abD)(1xy??Dba)(2x
【總結(jié)】00,1,0,,0???????第二節(jié)洛必達(dá)法則一洛必達(dá)法則二其他未定式洛必達(dá)法則型未定式解法型及一、:??00.)x(F)x(flim,)x(F)x(f,)x(ax)x(ax型未定式或稱為那末極限大都趨于零或都趨于無窮與兩個函數(shù)時或如果當(dāng)????????00例如
2025-08-01 16:52
【總結(jié)】2021/11/101復(fù)習(xí):P96—111預(yù)習(xí):P113—121P112習(xí)題4(2)(4).5(4).7.8(3).9(2).10.作業(yè)2021/11/102第十講極值與凸性一、極值與最值二、函數(shù)的凸性三、曲線的漸近線四、函數(shù)作圖2021/11/10
2024-10-16 21:17