【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【總結(jié)】微積分Ⅰ1第九章重積分§二重積分的計算一、利用直角坐標(biāo)計算二重積分二、利用極坐標(biāo)計算二重積分三、小結(jié)微積分Ⅰ2第九章重積分一、利用直角坐標(biāo)計算二重積分bxa??),()(21xyx????)(2xy??abD)(1xy??Dba)(2x
【總結(jié)】河海大學(xué)理學(xué)院《高等數(shù)學(xué)》高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》第二章導(dǎo)數(shù)與微分高等數(shù)學(xué)(上)河海大學(xué)理學(xué)院《高等數(shù)學(xué)》問題:變速直線運(yùn)動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftv
2025-05-07 12:10
【總結(jié)】Chapter2(2)偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)返回一.偏導(dǎo)數(shù)二.高階偏導(dǎo)數(shù)三.偏導(dǎo)數(shù)在經(jīng)濟(jì)分析中的應(yīng)用偏導(dǎo)數(shù)與高階偏導(dǎo)數(shù)目的要求:一.理解多元函數(shù)的偏導(dǎo)數(shù)的概念二.熟練掌握求一階和二階偏導(dǎo)數(shù)的方法重點:一.一階、二階偏導(dǎo)數(shù)計算三.熟練掌握偏導(dǎo)數(shù)
2025-01-14 07:37
【總結(jié)】2021/11/101P128習(xí)題5(1)(3).6(2)(3).作業(yè)復(fù)習(xí)P97—114預(yù)習(xí)P115—1282021/11/102一、冪級數(shù)的簡單應(yīng)用第十四講冪級數(shù)的應(yīng)用、傅里葉級數(shù)二、傅立葉級數(shù)2021/11/103一、冪級數(shù)的簡單應(yīng)用﹡函數(shù)
2024-10-16 17:33
【總結(jié)】二、高階導(dǎo)數(shù)的運(yùn)算法則第三節(jié)一、高階導(dǎo)數(shù)的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)第二章一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動機(jī)動目錄上頁下頁返回結(jié)束定義.若函數(shù)
2025-05-05 12:11
【總結(jié)】§3.高階導(dǎo)數(shù)函數(shù)f(x)的導(dǎo)數(shù)f'(x)又稱為f(x)的一階導(dǎo)數(shù)(導(dǎo)函數(shù)),仍可導(dǎo),若)(xf?存在,即xxfxxfx????????)()(lim0則稱其為y=f(x)的二階導(dǎo)數(shù),記為,)(,xfy?????22xdyd或.)(xd
2025-05-05 08:14
【總結(jié)】設(shè)y=f(x),若y=f(x)可導(dǎo),則f'(x)是x的函數(shù).若f'(x)仍可導(dǎo),則可求f'(x)的導(dǎo)數(shù).記作(f'(x))'=f''(x).稱為f(x)的二階導(dǎo)數(shù).若f''(x)仍可導(dǎo),則又可求f''(x)的導(dǎo)數(shù),….
2025-05-05 12:38
【總結(jié)】變速直線運(yùn)動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-22 11:18
【總結(jié)】微積分基本定理(79)31、變速直線運(yùn)動問題變速直線運(yùn)動中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2024-12-08 00:51
【總結(jié)】微積分初步輔導(dǎo)老師:劉丹鳳工作單位:岳陽電大課程的性質(zhì)與任務(wù)《微積分初步》是計算機(jī)和數(shù)控專業(yè)的一門必修的重要基礎(chǔ)課程,通過本課程的學(xué)習(xí),使學(xué)生對一元函數(shù)微分、積分有初步認(rèn)識和了解,使學(xué)生初步掌握微積分的基本知識、基本理論和基本技能,并逐步培養(yǎng)學(xué)生邏輯推理能力、自學(xué)能力,較熟練的運(yùn)算能力和綜合運(yùn)用所學(xué)知識分析問題、解決問題的能力
2025-01-19 21:35
【總結(jié)】二、幾個常用函數(shù)的高階導(dǎo)數(shù)第四節(jié)一、高階導(dǎo)數(shù)的概念高階導(dǎo)數(shù)第二章三、高階導(dǎo)數(shù)的運(yùn)算法則四、隱函數(shù)的二階導(dǎo)數(shù)五、由參數(shù)方程確定的函數(shù)的二階導(dǎo)數(shù)一、高階導(dǎo)數(shù)的概念速度即sv??加速度即)(???sa引例:變速直線運(yùn)動定義,xxfxf處可導(dǎo)在點的導(dǎo)數(shù)如果函數(shù))()(?即
2025-07-25 09:35
【總結(jié)】話說微積分制作人:項晶菁數(shù)學(xué)的核心領(lǐng)域是:?代數(shù)學(xué)——研究數(shù)的理論;?幾何學(xué)——研究形的理論;?分析學(xué)——溝通形與數(shù)且涉及極限運(yùn)算的部分。?舊三高(高等分析、高等代數(shù)、高等幾何)?數(shù)學(xué)分析權(quán)威R?柯朗所指出的,“微積分乃是一種震撼人心靈的智力奮斗的結(jié)晶”。?現(xiàn)代微積分有時作為“數(shù)學(xué)
2025-01-20 00:10
【總結(jié)】第五章微積分模型例1:(不允許缺貨的存儲模型)設(shè)某廠生產(chǎn)若干種產(chǎn)品,在輪換生產(chǎn)不同的產(chǎn)品時因更換設(shè)備要付生產(chǎn)準(zhǔn)備費(fèi)(與產(chǎn)品數(shù)量無關(guān)),同一的產(chǎn)量大于需求時因占用倉庫要付存儲費(fèi)。已知某一產(chǎn)品日需求量為100件,生產(chǎn)準(zhǔn)備費(fèi)5000元,存儲費(fèi)每件每日1元,若生產(chǎn)能力遠(yuǎn)大于需求,并且不允許出現(xiàn)缺貨,試安排該產(chǎn)品的生產(chǎn)計劃,即多少天生產(chǎn)一次(生產(chǎn)周期)
2025-04-29 01:24
【總結(jié)】第四章不定積分一、原函數(shù))()(xfxF??或dxxfxdF)()(?稱是的原函數(shù))(xF)(xf二、不定積分CxFdxxf???)()(三、基本性質(zhì)??)()(xfdxxf?????dxxfdxxfd)()(??CxFdxxF????)()(CxFxdF???
2024-11-03 21:17