【總結(jié)】高考數(shù)學(xué)圓錐曲線部分知識點梳理1、方程的曲線:在平面直角坐標(biāo)系中,如果某曲線(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2)以這個方程的解為坐標(biāo)的點都是曲線上的點,那么這個方程叫做曲線的方程;這條曲線叫做方程的曲線.點與曲線的關(guān)系:若曲線的方程是,則點在曲線上;點不在曲線上.兩條曲線的交
2025-04-04 05:08
【總結(jié)】:★★★★★知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內(nèi)一個動點到兩個定點、的距離之和等于常數(shù),這個動點的軌跡叫橢圓。這兩個定點叫橢圓的焦點,兩焦點的距離叫作橢圓的焦距。注意:若,則動點的軌跡為線段;若,則動點的軌跡無圖形。二、橢圓的方程1、橢圓的標(biāo)準(zhǔn)方程(端點為a、b,焦點為c)(1)當(dāng)焦點在軸上時,橢圓的標(biāo)準(zhǔn)方程:,其中;(2)當(dāng)焦點
2025-05-31 08:15
【總結(jié)】WORD資料可編輯§知識要點一、橢圓方程1.橢圓方程的第一定義:平面內(nèi)與兩個定點F1,F(xiàn)2的距離的和等于定長(定長通常等于2a,且2aF1F2)的點的軌跡叫橢圓。(1)①橢圓的標(biāo)準(zhǔn)方程:i.中心在原點,焦點在x軸上:.ii.
【總結(jié)】......高考數(shù)學(xué)圓錐曲線部分知識點梳理1、方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這
2025-04-04 05:07
【總結(jié)】讓更多的孩子得到更好的教育高考沖刺:直線與圓錐曲線的位置關(guān)系編稿:辛文升審稿:孫永釗【高考展望】,是高考必考內(nèi)容;;;,需要強(qiáng)化練習(xí),形成必要的技巧和技能?!局R升華】【高清課堂:直線與圓錐曲線369155知識要點】知識點一:直線與圓錐曲線的位置關(guān)系:直線與圓錐曲線的
2025-06-08 00:18
【總結(jié)】1 橢 圓典例精析題型一 求橢圓的標(biāo)準(zhǔn)方程【例1】已知點P在以坐標(biāo)軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P作長軸的垂線恰好過橢圓的一個焦點,求橢圓的方程.253【解析】故所求方程為+=1或+=1.x253y2103x210y25【點撥】(1)在求橢圓的標(biāo)準(zhǔn)方程
2025-04-17 12:54
【總結(jié)】四川大學(xué)家教協(xié)會圓錐曲線的方程與性質(zhì)1.橢圓(1)橢圓概念平面內(nèi)與兩個定點、的距離的和等于常數(shù)2(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離2c叫橢圓的焦距。若為橢圓上任意一點,則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點在x軸上)或()(焦點在y軸上)。注:①以上方程中的大小,其中;②在和兩個方程中都有的條件,要分清焦點的位置,只要看和的分母的大小。
2025-06-23 07:21
【總結(jié)】圓錐曲線的方程與性質(zhì)1.橢圓(1)橢圓概念平面內(nèi)與兩個定點、的距離的和等于常數(shù)2(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離2c叫橢圓的焦距。若為橢圓上任意一點,則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點在x軸上)或()(焦點在y軸上)。注:①以上方程中的大小,其中;②在和兩個方程中都有的條件,要分清焦點的位置,只要看和的分母的大小。例如橢圓(,,)當(dāng)時表示
2025-07-24 04:11
【總結(jié)】圓錐曲線的方程與性質(zhì)1.橢圓(1)橢圓概念平面內(nèi)與兩個定點、的距離的和等于常數(shù)2(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離2c叫橢圓的焦距。若為橢圓上任意一點,則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點在x軸上)或()(焦點在y軸上)。注:①以上方程中的大小,其中;②在和兩個方程中都有的條件,要分清焦點的位置,只要看和的分母的大小。例如橢圓(,,)
2025-05-31 12:09
【總結(jié)】直線與圓1、直線的傾斜角:(1)定義:在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)過的最小正角記為,那么就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時,規(guī)定傾斜角為0;(2)傾斜角的范圍2、直線的斜率:(1)定義:傾斜角不是90°的直線,它的傾斜角的正切值叫這條直線的斜率,即=tan(≠90°);傾斜角為90°的直
2025-07-23 14:00
【總結(jié)】高考數(shù)學(xué)圓錐曲線部分知識點梳理一、圓:1、定義:點集{M||OM|=r},其中定點O為圓心,定長r為半徑.2、方程:(1)標(biāo)準(zhǔn)方程:圓心在c(a,b),半徑為r的圓方程是(x-a)2+(y-b)2=r2圓心在坐標(biāo)原點,半徑為r的圓方程是x2+y2=r2(2)一般方程:①當(dāng)D2+E2-4F>0時,一元二次方程x2+y2+Dx+Ey+F=0
2025-06-24 02:09
【總結(jié)】1、中點坐標(biāo)公式:,其中是點的中點坐標(biāo)。2、弦長公式:若點在直線上,則,這是同點縱橫坐標(biāo)變換,是兩大坐標(biāo)變換技巧之一,或者。3、兩條直線垂直:則兩條直線垂直,則直線所在的向量4、韋達(dá)定理:若一元二次方程有兩個不同的根,則。常見的一些題型:題型一:數(shù)形結(jié)合確定直線和圓錐曲線的位置關(guān)系例題1、已知直線與橢圓始終有交點,求的取值范圍思路點撥:直線方程
2025-04-17 12:45
【總結(jié)】橢圓典例剖析知識點一 橢圓定義的應(yīng)用 方程+=1表示焦點在y軸上的橢圓,則m的取值范圍是________.解析:因為焦點在y軸上,所以16+m25-m,即m,又因為b2=25-m0,故m25,所以m的取值范圍為m:m25知識點二 求橢圓的標(biāo)準(zhǔn)方程 求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
2025-07-25 00:15
【總結(jié)】橢圓1、橢圓的第一定義:平面內(nèi)一個動點到兩個定點、的距離之和等于常數(shù),,兩焦點的距離叫作橢圓的焦距。.注意:若,則動點的軌跡為線段;若,則動點的軌跡無圖形.2、橢圓的標(biāo)準(zhǔn)方程1).當(dāng)焦點在軸上時,橢圓的標(biāo)準(zhǔn)方程:,其中;2).當(dāng)焦點在軸上時,橢圓的標(biāo)準(zhǔn)方程:,其中;注意:①在兩種標(biāo)準(zhǔn)方程中,總有a>b>0,并且橢圓的焦點總在長軸上;②兩種標(biāo)準(zhǔn)方程可用一般形式表示
2025-07-25 00:12
【總結(jié)】雙曲線知識點一、雙曲線的定義:1.第一定義:到兩個定點F1與F2的距離之差的絕對值等于定長(<|F1F2|)的點的軌跡((為常數(shù)))這兩個定點叫雙曲線的焦點.要注意兩點:(1)距離之差的絕對值.(2)2a<|F1F2|.當(dāng)|MF1|-