freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

抽屜原理的典型問題-閱讀頁

2025-04-09 02:31本頁面
  

【正文】 {14,2},{13,1}?! ±?: 從1到20這20個(gè)數(shù)中,任取11個(gè)數(shù),必有兩個(gè)數(shù),其中一個(gè)數(shù)是另一個(gè)數(shù)的倍數(shù)。  從這10個(gè)數(shù)組的20個(gè)數(shù)中任取11個(gè)數(shù),根據(jù)抽屜原理,所以這兩個(gè)數(shù)中,其中一個(gè)數(shù)一定是另一個(gè)數(shù)的倍數(shù)?! 》治雠c解答共有n位校友,每個(gè)人握手的次數(shù)最少是0次,即這個(gè)人與其他校友都沒有握過手。如果有一個(gè)校友握手的次數(shù)是n1次,、 …、n2,還是后一種狀態(tài)…、n1,到會(huì)的n個(gè)校友每人按照其握手的次數(shù)歸入相應(yīng)的“抽屜”,根據(jù)抽屜原理,至少有兩個(gè)人屬于同一抽屜,則這兩個(gè)人握手的次數(shù)一樣多?! 〕閷显怼 “寻藗€(gè)蘋果任意地放進(jìn)七個(gè)抽屜里,不論怎樣放,至少有一個(gè)抽屜放有兩個(gè)或兩個(gè)以上的蘋果。它是組合數(shù)學(xué)中一個(gè)重要的原理?! ⌒问揭唬鹤C明:設(shè)把n+1個(gè)元素分為n個(gè)集合A1,A2,…,An,用a1,a2,…,an表示這n個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)ai大于或等于2(用反證法)假設(shè)結(jié)論不成立,即對(duì)每一個(gè)ai都有ai2,則因?yàn)閍i是整數(shù),應(yīng)有ai≤1,于是有:  a1+a2+…+an≤1+1+…+1=n  形式二:設(shè)把n?m+1個(gè)元素分為n個(gè)集合A1,A2,…,An,用a1,a2,…,an表示這n個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)ai大于或等于m+1。所以,至少有存在一個(gè)ai≥m+1  高斯函數(shù):對(duì)任意的實(shí)數(shù)x,[x]表示“不大于x的最大整數(shù)”.  例如:[]=3,[]=2,[]=3,[7]=7,……一般地,我們有:[x]≤x[x]+1  形式三:證明:設(shè)把n個(gè)元素分為k個(gè)集合A1,A2,…,Ak,用a1,a2,…,ak表示這k個(gè)集合里相應(yīng)的元素個(gè)數(shù),需要證明至少存在某個(gè)ai大于或等于[n/k]。(用反證法)假設(shè)結(jié)論不成立,即對(duì)每一個(gè)ai都有ai  所以,假設(shè)不成立,故必有一個(gè)i,在第i個(gè)集合中元素個(gè)數(shù)ai≥qi  形式五:證明:(用反證法)將無窮多個(gè)元素分為有限個(gè)集合,假設(shè)這有限個(gè)集合中的元素的個(gè)數(shù)都是有限個(gè),則有限個(gè)有限數(shù)相加,所得的數(shù)必是有限數(shù),這就與題設(shè)產(chǎn)生矛盾,所以,假設(shè)不成立,故必有一個(gè)集合含有無窮多個(gè)元素。.某一類至少包含三個(gè)數(shù)。.某兩類各含兩個(gè)數(shù),第三類包含一個(gè)數(shù).  若是第一種情況,就在至少包含三個(gè)數(shù)的那一類中任取三數(shù),其和一定能被3整除?!薄  皬娜我?雙手套中任取6只,其中至少有2只恰為一雙手套?!薄 〈蠹叶紩?huì)認(rèn)為上面所述結(jié)論是正確的。它的內(nèi)容可以用形象的語言表述為:  “把m個(gè)東西任意分放進(jìn)n個(gè)空抽屜里(mn),那么一定有一個(gè)抽屜中放進(jìn)了至少2個(gè)東西。 這相當(dāng)于把367個(gè)東西放入 366個(gè)抽屜,至少有2個(gè)東西在同一抽屜里在第二個(gè)結(jié)論中,不妨想象將5雙手套分別編號(hào),即號(hào)碼為1,2,...,5的手套各有兩只,同號(hào)的兩只是一雙。這相當(dāng)于把6個(gè)東西放入5個(gè)抽屜,至少有2個(gè)東西在同一抽屜里?!薄 ±蒙鲜鲈砣菀鬃C明:“任意7個(gè)整數(shù)中,至少有3個(gè)數(shù)的兩兩之差是3的倍數(shù)?! ∪绻麊栴}所討論的對(duì)象有無限多個(gè),抽屜原理還有另一種表述:  “把無限多個(gè)東西任意分放進(jìn)n個(gè)空抽屜(n是自然數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了無限多個(gè)東西。許多有關(guān)存在性的證明都可用它來解決?!边@個(gè)問題可以用如下方法簡(jiǎn)單明了地證出:  在平面上用6個(gè)點(diǎn)A、B、C、D、E、F分別代表參加集會(huì)的任意6個(gè)人。否則連一條藍(lán)線。根據(jù)抽屜原理可知其中至少有3條連線同色,不妨設(shè)AB,AC,AD同為紅色。不論哪種情形發(fā)生,都符合問題
點(diǎn)擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1