【摘要】§基本不等式2abab??教學(xué)目標(biāo):1、知識與技能目標(biāo):(1)掌握基本不等式2abab??,認(rèn)識其運(yùn)算結(jié)構(gòu);(2)了解基本不等式的幾何意義及代數(shù)意義;(3)能夠利用基本不等式求簡單的最值。2、過程與方法目標(biāo):(1)經(jīng)歷由幾何圖形抽象出基本不等式的過程;(2)體驗(yàn)數(shù)形結(jié)合思想。
2025-01-22 08:01
【摘要】基本不等式的應(yīng)用課時目標(biāo);(小)值問題.1.設(shè)x,y為正實(shí)數(shù)(1)若x+y=s(和s為定值),則當(dāng)______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當(dāng)______時,和x+y有最____值,且這個值為______.2.利用
2025-02-07 10:12
【摘要】第2課時基本不等式【課標(biāo)要求】1.理解并掌握定理1、定理2,會用兩個定理解決函數(shù)的最值或值域問題.2.能運(yùn)用平均值不等式(兩個正數(shù)的)解決某些實(shí)際問題.【核心掃描】1.基本不等式常用來考查函數(shù)最值等問題,要注意不等式成立的前提條件.(重點(diǎn))2.實(shí)際應(yīng)用中的最值問題通常轉(zhuǎn)化為y=ax+bx
2024-09-02 17:21
【摘要】第1課時不等關(guān)系.,會列不等式表示數(shù)量關(guān)系..,并且能靈活應(yīng)用來解決一些實(shí)際問題.咖啡館配制兩種飲料,甲種飲料每杯分別用奶粉9g,咖啡4g,糖3g;乙種飲料每杯分別用奶粉4g,咖啡5g,糖103600g,咖啡2021g,糖3000g,設(shè)每天應(yīng)配制甲種飲
2025-02-10 02:37
【摘要】基本不等式與最大(小)值課時目標(biāo);(小)值問題.1.設(shè)x,y為正實(shí)數(shù)(1)若x+y=s(和s為定值),則當(dāng)______時,積xy有最____值,且這個值為________.(2)若xy=p(積p為定值),則當(dāng)______時,和x+y有最____值,且這個值為______.
2025-02-07 06:35
【摘要】第4課時一元二次不等式及其解法的應(yīng)用...上一課時我們共同學(xué)習(xí)了一元二次不等式的解法,并能解簡單的一元二次不等式,一元二次不等式及其解法是一種重要的數(shù)學(xué)工具,是集合、函數(shù)、不等式等知識的綜合交匯點(diǎn),地位重要,這一講我們將共同探究一元二次不等式及其解法的應(yīng)用.問題1:簡單的一元高次不等式和
【摘要】基本不等式的應(yīng)用教學(xué)目標(biāo):一、知識與技能1.能利用基本不等式解決最值問題;2.會利用基本不等式解決與三角有關(guān)問題.二、過程與方法1.通過實(shí)例體會基本不等式在最值問題中的應(yīng)用;2.通過實(shí)例體會總結(jié)基本不等式在應(yīng)用中需要注意的問題.三、情感、態(tài)度與價值觀通過親歷解題的過程,
【摘要】【成才之路】2021年春高中數(shù)學(xué)第3章不等式3基本不等式第2課時基本不等式與最大(小)值同步練習(xí)北師大版必修5一、選擇題1.已知a≥0,b≥0,且a+b=2,則()A.a(chǎn)b≤12B.a(chǎn)b≥12C.a(chǎn)2+b2≥2D.a(chǎn)2+b2≤2[答案]C
【摘要】專題基本不等式編者:高成龍專題基本不等式【一】基礎(chǔ)知識基本不等式:(1)基本不等式成立的條件:;(2)等號成立的條件:當(dāng)且僅當(dāng)時取等號.(1);(2);【二】例題分析【模塊1】“1”的巧妙替換【例1】已知,且,則的最小值為
2024-09-15 19:27
【摘要】高中數(shù)學(xué)必修五基本不等式題型(精編)變2.下列結(jié)論正確的是()A.若,則B.若,則C.若,,則D.若,則3.若m=(2a-1)(a+2),n=(a+2)(a-3),則m,n的大小關(guān)系正確的是例2、解下列不等式(1)
2025-05-22 05:12
【摘要】不等式第三章§3基本不等式第三章第1課時基本不等式課堂典例講練2易混易錯點(diǎn)睛3課時作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)某金店有一座天平,由于左右兩臂長略有不等,所以直接稱重不準(zhǔn)確.有一個顧客要買一串金項(xiàng)鏈,店主分別把項(xiàng)鏈放于左右兩盤各稱一次,得到兩個不
2025-01-20 03:38
【摘要】第2課時基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關(guān)的實(shí)際應(yīng)用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2025-01-21 08:10
【摘要】第3課時一元二次不等式及其解法,掌握一元二次不等式的解法...為促進(jìn)某品牌彩電的銷售,廠家設(shè)計了兩套降價方案.方案①:先降價x%,再降價x%(x0);方案②:一次性降價2x%,問哪套方案降價幅度大?問題1:一元二次不等式一般地,含有未知數(shù),且未知數(shù)的最高
【摘要】基本不等式的證明課時目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),
2025-02-07 10:13
【摘要】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當(dāng)且僅當(dāng)a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2025-02-10 20:20