【正文】
大,最大體積。函數(shù)在點處的梯度向量,;設(shè)為個條件相交部分的方程,其中是一些固定的常數(shù),這樣我們就可以把多個條件轉(zhuǎn)化了為一個條件,而曲面在點處的法向量為:,其中;設(shè)曲面在點處的切平面上的一個切向量為:,可以得到一個切向量,如令,則,消去,于是得到切平面上的一個切向量,類似可以得到另外的個向量,…。例12[16] 已知拋物面被平面截成一個橢圓,求原點到這個橢圓的的最長和最短距離。又曲面在點的切平面上有兩個向量,和,把這兩個向量與作內(nèi)積,使其為0;則可得到下列方程組:解方程組:解得其函數(shù)的駐點為,;由題意知,函數(shù)在有界閉集上連續(xù),則函數(shù)必有最大值和最小值,而求得的穩(wěn)定點又恰是兩個,所以它們一個是極大值點,另一個是極小值點。根據(jù)判別式的正負(fù)關(guān)系從而判定根的是否存在性。例13 若,試求的極值.解: 由得,代入得整理得: ①則有: ②即 ③解關(guān)于的二次不等式③,得: ④顯然,求函數(shù)的極值, 相當(dāng)于求 ⑤或 ⑥的極值.由⑤式得 ⑦關(guān)于的二次方程要有實數(shù)解,必須, 即 ⑧解此關(guān)于的二次不等式,把代入⑦得:,再把,代入①,得,最后把,代入,得.所以,當(dāng),時,函數(shù)達(dá)到極大值3.同理可得,當(dāng),時,函數(shù)達(dá)到極小值3.所謂標(biāo)準(zhǔn)量代換法[17],就是在求某些多個變量的條件極值時,我們可以選取某個與這些變量有關(guān)的量作為標(biāo)準(zhǔn)量,稱其余各量為比較量,然后將比較量用標(biāo)準(zhǔn)量與另外選取的輔助量表示出來,這樣就將其變?yōu)檠芯繕?biāo)準(zhǔn)量與輔助量間的關(guān)系了. 如果給定條件是幾個變量之和的形式,一般設(shè)這幾個量的算術(shù)平均數(shù)為標(biāo)準(zhǔn)量.例14 設(shè),求的最小值.解:取為標(biāo)準(zhǔn)量, 令,則 (為任意實數(shù)),從而有(等號當(dāng)且僅當(dāng)即時成立). 最小值為結(jié) 束 語本文通過從一元函數(shù)極值的問題開始進(jìn)行研究,包括一元函數(shù)的極值多種求解方法,其次為二元函數(shù)的常用求解,再逐步推廣到多元函數(shù)極值的各種求解方法。通過本文知道,除了拉格朗日乘數(shù)法、雅可比矩陣法和梯度法外,其余條件極值解法均為初等數(shù)學(xué)的方法,掌握好初等數(shù)學(xué)的方法求解多元函數(shù)條件極值有時候會更簡單,但其使用的過程中具有一定的技巧性,也有一定的局限性,需要根據(jù)具體情況具體分析。致 謝四年的讀書生活在這個季節(jié)即將劃上一個句號,而于我的人生卻只是一個逗號,我將面對又一次征程的開始。本次學(xué)位論文是在我的導(dǎo)師楊建偉老師的親切關(guān)懷和悉心指導(dǎo)下完成的。在此我要向楊老師表示我最誠摯的謝意和最崇高的敬意!同時也要感謝參考文獻(xiàn)中的作者們,因為你們的貢獻(xiàn),讓我順利的完成我的論文。感謝王婧老師在四年大學(xué)生活中對我的照顧與關(guān)心,感謝祁萌書記和趙娟老師對我平時的指導(dǎo)以及對我畢業(yè)擇業(yè)時的建議,同時也要感謝陪我一起走過大學(xué)四年的同學(xué)與朋友,因為你們,我在大學(xué)四年經(jīng)歷了許許多多的學(xué)生工作經(jīng)歷,讓我受益很多。最后我要用我最真誠的心意說聲:“感謝你們!”參 考 文 獻(xiàn)[1][J].考試周刊,2011,(52):8485.[2](第三版)上冊[M].高等教育出版社,.[3][J].邢臺學(xué)院學(xué)報,:9798.[4][J].武漢交通管理干部學(xué)院學(xué)報,:110115.[5][J].科技信息,2010,(24):120.[6]“陷阱”[J].數(shù)學(xué)技術(shù)應(yīng)用科學(xué),2006:1516.[7][J].焦作師范高等??茖W(xué)校學(xué)報,2007(12):8082.[8][J].氣象教育與科技,2008,3.(2),1418.[9]龍莉,[J].鞍山師范學(xué)院學(xué)報,5(4):1012.[10][J].菏澤師專學(xué)報,25(2):1618. [11]張芳,[J].大學(xué)數(shù)學(xué),24(6):130133.[12]齊新社,包敬民,[J]. 高等數(shù)學(xué)研究,12(2):5456.[13][D]:玉林師范學(xué)院,2007.[14][J].淮南師范學(xué)院學(xué)報,2004,3(6):12.[15]朱江紅,[J].滄州師范??茖W(xué)校學(xué)報,2010,02:9599.[16][J].科技創(chuàng)新導(dǎo)報,2008,(15):246247.[17][J].臨沂師范學(xué)院學(xué)報,1999,(12):2124.附 錄附錄一:外文文獻(xiàn)EXTREME VALUES OF FUNCTIONS OF SEVERAL REAL VARIABLES1. Stationary PointsDefinition Let and . The point a is said to be: (1) a local maximum iffor all points sufficiently close to 。(3) a global (or absolute) maximum iffor all points 。(5) a local or global extremum if it is a local or global maximum or minimum.Definition Let and . The point a is said to be critical or stationary point if and a singular point if does not exist at .Fact Let and .If has a local or global extremum at the point , then must be either:(1) a critical point of , or(2) a singular point of , or(3) a boundary point of .Fact If is a continuous function on a closed bounded set then is bounded and attains its bounds.Definition A critical point which is neither a local maximum nor minimum is called a saddle point.Fact A critical point is a saddle point if and only if there are arbitrarily small values of for which takes both positive and negative values.Definition If is a function of two variables such that all second order partial derivatives exist at the point , then the Hessian matrix of at is the matrixwhere the derivatives are evaluated at.If is a function of three variables such that all second order partial derivatives exist at the point , then the Hessian of f at is the matrixwhere the derivatives are evaluated at.Definition Let be an matrix and, for each ,let be the matrix formed from the first rows and columns of .The determinants det(),are called the leading minors of Theorem (The Leading Minor Test). Suppose that is a sufficiently smooth function of two variables with a critical point atand H the Hessian of , then is:(1) a local maximum if 0det(H1) = fxx and 0det(H)=。 (3) a saddle point if neither of the above hold.where the partial derivatives are evaluated at.Suppose that is a sufficiently smooth function of three variables with a critical point at and Hessian H , then is:(1) a local maximum if 0det(H1), 0det(H2) and 0det(H3)。(3) a saddle point if neither of the above hold.where the partial derivatives are evaluated at.Key Points.To find the extreme values of a function on a closed bounded set it is necessary to consider the value of the function at stationary points(), singular points (does not exist) and boundary points(points on the edge of the set).If The Leading Minor Test is not applicable, the stationary point must be classified by directly applying Definition and