【摘要】;)()(任意小表示AxfAxf????.的過程表示???xXx.0sin)(,無限接近于無限增大時當(dāng)xxxfx?問題:如何用數(shù)學(xué)語言刻劃函數(shù)“無限接近”.第二節(jié)函數(shù)極限的定義和性質(zhì)一、自變量趨向無窮大時函數(shù)的極限XX???A??Aoxy)(xfy?A定義1.設(shè)函數(shù)大于某一正數(shù)時有定義,若
2024-09-01 11:10
【摘要】曲率是描述曲線局部性質(zhì)(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉(zhuǎn)角越大.轉(zhuǎn)角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-07-10 04:19
【摘要】XX學(xué)院畢業(yè)論文淺析函數(shù)極值的求法及應(yīng)用院系:數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院專業(yè): 數(shù)學(xué)與應(yīng)用數(shù)學(xué) 年級、班級:08數(shù)本姓名: XXX 學(xué)號:XXXXXXX指導(dǎo)教師(職稱):XXXXX
2025-08-12 17:23
【摘要】1多元函數(shù)的微積分主要內(nèi)容:一.多元函數(shù)的概念二.二元函數(shù)的極限和連續(xù)三.偏導(dǎo)數(shù)的概念及簡單計(jì)算四.全微分五.空間曲線的切線與法平面六.曲面的切平面與法線七.多元函數(shù)的極值2設(shè)D是平面上的一個點(diǎn)集.如果對于每個點(diǎn)P(x,y)?D,變量z按照一定法則總有確定的值和它對應(yīng),
2025-06-15 23:40
【摘要】一、函數(shù)極限的定義三、小結(jié)思考題二、函數(shù)極限的性質(zhì)第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個變化過程中,如果對應(yīng)的函數(shù)值無限接近于某個確定的常數(shù),那么這個確定的數(shù)叫做自變量在這一變化過程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應(yīng)的函數(shù)值任意接近于有限值自
2024-11-02 12:44
【摘要】第五節(jié)函數(shù)關(guān)系的建立例1在一條直線公路的一側(cè)有A、B兩村,其位置如圖1-1所示,公共汽車公司欲在公路上建立汽車站M.A、B兩村各修一條直線大道通往汽車站,設(shè)CM=x(km),試把A、B兩村通往M的大道總長y(km)表示為x的函數(shù).ABCDM2kmx
2024-11-02 12:45
【摘要】函數(shù)的極值及其應(yīng)用作者:xxxxx指導(dǎo)老師:xx摘要:論述了函數(shù)的極值問題,討論了求函數(shù)極值的必要條件和充分條件,通過例題分析了求函數(shù)的極值問題
2025-08-05 23:38
【摘要】函數(shù)極值的幾種求法畢業(yè)論文目錄摘要 IAbstract II第1章緒論 1 1 1第2章一元函數(shù)極值的求解方法 2一元函數(shù)極值定義 2一元函數(shù)極值的充分必要條件 2一元函數(shù)極值的必要條件 2極值的第一充分條件 2極值的第二充分條件 3極值的第三充分條件 4一元函數(shù)極值的求解方法 4第3章二元函
2025-05-25 02:20
【摘要】復(fù)合函數(shù)求導(dǎo)法則性質(zhì)且點(diǎn)可導(dǎo)在則點(diǎn)可導(dǎo)在而點(diǎn)可導(dǎo)在設(shè),)]([,)()(,)(0000xxgfyxguufyxxgu????)63(dddddd??xuuyxy00))]([(ddxxxxxgfxy????))]([(dd??xgfxy寫成導(dǎo)函數(shù)的形式為簡寫為)()(00x
2025-03-09 05:44
【摘要】一、函數(shù)的連續(xù)性的概念二、函數(shù)的間斷點(diǎn)四、小結(jié)思考題第七節(jié)函數(shù)的連續(xù)性三、初等函數(shù)的連續(xù)性一、函數(shù)的連續(xù)性(continuity)(increment).1221的增量稱為變量則變到終值從它的初值設(shè)變量uuuuuuu???注意:可正可負(fù);u?)1(.)2(的乘積與是一個整體,
2024-10-23 16:43
【摘要】變速直線運(yùn)動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2024-09-01 11:18
【摘要】一、一個方程的情形二、方程組的情形三、小結(jié)思考題第五節(jié)隱函數(shù)的求導(dǎo)公式0),(.1?yxF一、一個方程的情形隱函數(shù)存在定理1設(shè)函數(shù)),(yxF在點(diǎn)),(00yxP的某一鄰域內(nèi)具有連續(xù)的偏導(dǎo)數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點(diǎn)),
2024-10-23 16:41
【摘要】一、柱面與旋轉(zhuǎn)曲面二、二次曲面三、小結(jié)思考題第五節(jié)曲面及其方程本節(jié)只對一些常見的曲面,圍繞下面兩個基本問題進(jìn)行討論:(Ⅱ)已知坐標(biāo)間的關(guān)系式,研究曲面形狀.(討論柱面(cylinder)、旋轉(zhuǎn)曲面(rotatingsurface))(討論二次曲面(twicesurface))(Ⅰ)已知曲面作為點(diǎn)的軌
2024-10-23 11:12
【摘要】導(dǎo)數(shù)和微分在書寫的形式有些區(qū)別,如y'=f(x),則為導(dǎo)數(shù),書寫成dy=f(x)dx,則為微分。積分是求原函數(shù),可以形象理解為是函數(shù)導(dǎo)數(shù)的逆運(yùn)算。通常把自變量x的增量Δx稱為自變量的微分,記作dx,即dx=Δx。于是函數(shù)y=f(x)的微分又可記作dy=f'(x)dx,而其導(dǎo)數(shù)則為:y'=f'(x)。設(shè)F(x)為函數(shù)f(x)的一個原函數(shù),我們把
2024-09-15 06:33
【摘要】三、多元函數(shù)的極限二、多元函數(shù)的概念四、多元函數(shù)的連續(xù)性五、小結(jié)思考題第一節(jié)多元函數(shù)的基本概念一、區(qū)域設(shè)),(000yxP是xoy平面上的一個點(diǎn),?是某一正數(shù),與點(diǎn)),(000yxP距離小于?的點(diǎn)),(yxP的全體,稱為點(diǎn)0P的?鄰域,記為),(
2024-11-02 12:43