【正文】
gineering science itself has important series and function of uniform convergence problem often is the key point of mathematical analysis,it is difficult,not easy to understand and function studies series one of the basic problem is that the uniform convergence ,but the uniform convergence criterion is more difficult,in the uniform convergence of the series expressed by function terms consistent with the part and function of convergence are natural thought is the present,the Posistive SeriesD’Alembertcriterion,Cauchycriterion ,Raabe discriminant method and the limits of their form has been generalized to function successfully a series of uniform convergence addition,there are a number of discriminant function is a series of uniform convergence of the method ,these methods depending on the conditions: 1. in or limit function can be calculated and the function,can use the definition. 2. more than using the uniform convergence:the necessary and sufficient condition of uniform convergence in the range is on the uniform convergence to zero,the necessary and sufficient condition of uniform convergence in the is=0. 3. using Cauchy criterion(function series and column are available). 4. using the function of the M series of uniform convergence (Weierstrass discriminant method). 5. using the series of uniform convergence of Dimchler discriminant method and Abel discriminant method. 6. with the conclusion that if a function listed in converges to,and each in satisfied the Lipschitz condition,that is,make,n=1,2,… ,the uniform convergence in. 7. using the conclsion:if the convergence in differentiable function on,and on the uniform convergence in the. 8. Dini theorem(function series and column are available) 9. use conclusion:a power series and column are available,and is (i) when or convergence,uniform convergence on (or)。 一種自然的思想是將正項(xiàng)級(jí)數(shù)的判別法推廣到函數(shù)項(xiàng)級(jí)數(shù)一致收斂的判別法上去 .目前,正項(xiàng)級(jí)數(shù)的 D’ Alembert 判別法、 Cauchy 判別法、Raabe判別法和它 們的極限形式順利地推廣到了函數(shù)項(xiàng)級(jí)數(shù)的一致收斂的判別上 .此外,還有 很 多種判別函數(shù)項(xiàng)級(jí)數(shù)一致收斂的方法 ,這些方法視條件而定: 1 在和函數(shù) ()Sx或極限函數(shù) ()fx可以求出的情況下,可以用定義。 特此鄭重聲明! 指導(dǎo)老師(簽名): 論文作者(簽名): 2020 年 5 月 X 日 黃岡師范學(xué)院本科學(xué)位論文 [第 1 頁,共 15 頁 ] 摘 要 函數(shù)項(xiàng)級(jí)數(shù)在數(shù)學(xué)科學(xué)本身和工程技術(shù)領(lǐng)域都有重要應(yīng)用 . 函數(shù)項(xiàng)級(jí)數(shù)和函數(shù)列的一致收斂性問題往往是數(shù)學(xué)分析的重點(diǎn),又是難點(diǎn),不易理解和掌握。 本 科 生 畢 業(yè) 論 文 論 文 題 目: 函數(shù)項(xiàng)級(jí)數(shù)的收斂判別法 探究 院 系: 數(shù)學(xué)與計(jì)算機(jī)科學(xué)學(xué)院 專 業(yè): 數(shù)學(xué)與應(yīng)用數(shù)學(xué) (或計(jì)算機(jī)科學(xué)與技術(shù)、信息與計(jì)算 科學(xué)、軟件工程 ) 2020 年 5 月 日 NO.: 202021140207 2020200X2XX40XXX 200X2XX40XXX Huanggang Normal University Thesis Graduates Topic : The convergence criterion of series expressed by function terms Author : Dai Le College : College of Mathematics and Computer Science Specialty : Mathematics and Applied Mathematics (or Computer Science and Technology,or Information and Computing Science,or Software Engineering) Class : 202002 Tutor : Xia Dan May Xth, 2020 鄭重聲明 本人所呈交的畢業(yè)論文(設(shè)計(jì))是本人在指導(dǎo)教師 夏丹 的指導(dǎo)下獨(dú)立研究并完成的。除了文中特別加以標(biāo)注引用的內(nèi)容外,沒有剽竊、抄襲、造假等違反學(xué)術(shù)道德、學(xué)術(shù)規(guī)范和侵權(quán)行為,本人完全意識(shí)到本聲明的法 律后果由本人承擔(dān)。 而 函數(shù)項(xiàng)級(jí)數(shù)的一個(gè)基本問題就是研究其一致收斂性,但是 一致收斂的判別比較困難, 函數(shù)項(xiàng)級(jí)數(shù)1 ()n Unx???在區(qū)間 I 上的一致收斂性與部分和函數(shù)列 ? ?()nSx 的一致收斂性是等價(jià)的。 2 利用余項(xiàng)的一致收斂性:1 ()n Unx???在區(qū)間 I 上一致收斂的充要條件是1( ) ( )nkknr x U x???? ?在 I 上一致收斂于 0,即 lim | ( ) | 0nn xISup r x?? ? ?, | ( )|nfx 在 I 上一致收斂于 ()fx的充要條件是 lim | ( ) ( ) |nn xISup f x f x?? ? ?=0. 3 利用 Cauchy 準(zhǔn)則(函數(shù)項(xiàng)