freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

等腰三角形教學(xué)設(shè)計-展示頁

2024-11-12 18:00本頁面
  

【正文】 D,∠ADB=∠CDA,BD=CD,AD=AD,AB=AC 師生歸納: 性質(zhì)1:等腰三角形是軸對稱圖形,教師說明:對稱軸是一條直線,而三角形的中線是線段,因此不能說等腰三角形底邊上的中線是它的對稱軸。既可以根據(jù)折疊過程中某些線段或角重合說明,也可以運用全等來說明。學(xué)生對等腰三角形在小學(xué)已經(jīng)學(xué)過,軸對稱圖形上節(jié)課學(xué)過,所以引入即可)三、明確目標(biāo),互助探究明確目標(biāo),自學(xué)自練活動1: 學(xué)生動手折疊自制的等腰三角形 教師提出問題:已知:等腰△ABC中,AB=AC(1)等腰三角形是軸對稱圖形嗎?(2)如果是,作出它的對稱軸。情感、態(tài)度、價值觀目標(biāo):培養(yǎng)學(xué)生小組合作意識,使學(xué)生理解轉(zhuǎn)化的數(shù)學(xué)思想,培養(yǎng)學(xué)生變通的能力。過程與方法目標(biāo):①讓學(xué)生體驗等腰三角形是一個軸對稱性圖形。我在教學(xué)過程中嚴(yán)格遵循學(xué)?!八牟苛h(huán)節(jié)”教學(xué)模式,體現(xiàn)活力新課堂的理念,通過多種方法改變學(xué)生的角色,聽、說、讀、寫交互轉(zhuǎn)換,培養(yǎng)學(xué)生主動學(xué)習(xí)的品質(zhì),充分進(jìn)行賞識教育,培養(yǎng)孩子的自信心。通過學(xué)生動手操作、觀察猜想、推理論證的方法,借助全等三角形為推理工具,來得出等腰三角形的三條性質(zhì)。本節(jié)內(nèi)容既是前面知識的深化和應(yīng)用,又是今后學(xué)習(xí)等邊三角形的預(yù)備知識,還是證明角相等、線段相等及兩直線互相垂直的重要依據(jù),具有承上啟下的重要作用。第一篇:等腰三角形教學(xué)設(shè)計《等腰三角形》教學(xué)設(shè)計[教學(xué)內(nèi)容]:義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(魯教版)七年級數(shù)學(xué)上冊第二章 第三節(jié)《等腰三角形》第一課時,課本49頁~51頁。[教材分析]:分析教材:教材從具體到抽象,從感性到理性,從實踐到理論,再用實踐檢驗理論,層次分明,循序本課時教學(xué)內(nèi)容的地位和作用本節(jié)是在探索了兩個三角形全等的條件及軸對稱性質(zhì)的基礎(chǔ)上進(jìn)行的,進(jìn)一步認(rèn)識特殊的軸對稱圖形──等腰三角形,主要探索等腰三角形“等邊對等角”和“等腰三角形的三線合一”的性質(zhì)。學(xué)情分析學(xué)生小學(xué)接觸過等腰三角形,對等腰三角形有初步的認(rèn)識,前段時間探究過兩個三角形全等的條件及軸對稱的性質(zhì),比較習(xí)慣用三角形全等證明線段相等和角相等,一、教材依據(jù)魯教版七年級上冊第二章 第三節(jié)二、設(shè)計思想本節(jié)內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用,我采取啟發(fā)式、探究式以及討論式的教學(xué)方法。首先通過學(xué)生對等腰三角形的折疊操作,得出等腰三角形的性質(zhì)1:等腰三角形是軸對稱圖形,在折疊過程中同時發(fā)現(xiàn)等腰三角形的性質(zhì)2和性質(zhì)3,性質(zhì)2:“等邊對等角“是今后證明兩角相等常用方法之一,而性質(zhì)3:等腰三角形的“三線合一”是今后證明兩條線段相等、兩個角相等及兩條線段互相垂直的重要依據(jù)。三、教學(xué)目標(biāo)知識與能力目標(biāo):①掌握等腰三角形的3條性質(zhì)②運用等腰三角形的性質(zhì)進(jìn)行有關(guān)證明和計算。②經(jīng)歷操作、發(fā)現(xiàn)、猜想、證明的過程,培養(yǎng)學(xué)生的邏輯思維能力。四、教學(xué)重點等腰三角形的性質(zhì)定理及其證明五、教學(xué)難點“三線合一”的理解及其應(yīng)用六、教學(xué)準(zhǔn)備自制等腰三角形紙片七、教學(xué)過程(一)、復(fù)習(xí)回顧,課前展示(1)等腰三角形的定義(2)等腰三角形的要素:腰、底邊、頂角、底角(3)軸對稱圖形的定義(二)創(chuàng)設(shè)情境,導(dǎo)入新課我們生活在一個圖形世界當(dāng)中,用數(shù)學(xué)的眼光觀察四副圖片,你發(fā)現(xiàn)了哪種熟悉的圖形?引導(dǎo)學(xué)生觀察圖形特點,如埃及金字塔、通過觀察得知,每幅圖形中都有等腰三角形出示等腰三角形(通過觀察,學(xué)生對等腰三角形有了初步的感知。(3)你能發(fā)現(xiàn)重合的線段和重合的角嗎?學(xué)生動手折疊等腰三角形,把邊AB疊合到邊AC上,這時點B與C重合,并出現(xiàn)折痕AD 教師鼓勵學(xué)生在操作中盡可能多的探索等腰三角形的特征,并盡量運用自己的語言說明理由。電腦形象的演示,教師適時的引導(dǎo),學(xué)生的動手操作,有利于培養(yǎng)學(xué)生的觀察和概括能力;充分體現(xiàn)了教師為主導(dǎo),學(xué)生為主體的教學(xué)思想。設(shè)計意圖:通過學(xué)生動手操作,觀察猜想,由教師的引導(dǎo),歸納出等腰三角形的第一條性質(zhì),形成感性認(rèn)識,重視知識的形成過程,培養(yǎng)學(xué)生自主探究的學(xué)習(xí)方法。師生歸納: 性質(zhì)2:等腰三角形的兩個底角相等,簡稱:等邊對等角 并指出它的幾何符號語言的書寫: ∵ AB=AC(已知)∴∠B=∠C(等邊對等角)梳理問題,分配任務(wù)在等腰△ABC中,AB=AC,你能發(fā)現(xiàn)折痕AD有哪些作用嗎? 學(xué)生總結(jié):(1)AD是頂角∠BAC的平分線(2)AD是底邊BC的中線(3)AD是底邊BC的高線教師歸納:以上就是等腰三角形的“三線合一”,強(qiáng)調(diào)是哪三條線段 性質(zhì)3:等腰三角形的“三線合一”教師講解,歸納深化等腰三角形的性質(zhì):(1)等腰三角形是軸對稱圖形。(簡寫為“等邊對等角”)(3)等腰三角形的頂角的平分線、底邊上的中線、底邊上的高線重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸。鞏固訓(xùn)練活動3:(1)墻上釘了一根木條,小明想檢驗這根木條是否水平,他拿來一個如圖所示的測平儀。小明將BC邊與木條重合,觀察此時重錘是否通過點A。你能說明其中的道理嗎?BDAC(2)已知:如圖,某房屋屋頂是三角形支架,AB=AC,立柱AD⊥BC,若∠BAC=130176。A90176。B①CB②CBC③學(xué)生歸納:等腰三角形中頂角與底角的關(guān)系:頂角十 2 底角=180176。則它的另兩個角的度數(shù)為(2)已知等腰三角形的一個內(nèi)角為100176?;顒?: 拓展提高(1)、已知:如圖,在等腰ΔABC中,AB=AC,∠A=20176。則它的另兩個角的度數(shù)為(2)等腰三角形的一邊長為5cm,另一邊為8cm,則它的周長等于(2)等腰三角形的一邊長為5cm,另一邊為10cm,則它的周長等于四、總結(jié)歸納,當(dāng)堂反饋活動6: 本節(jié)課你有哪些新收獲?師生活動:學(xué)生用自己語言歸納,教師適時點評,并關(guān)注以下幾個問題:“等邊對等角”;等腰三角形的“三線合一”;等腰三角形的對稱軸;等腰三角形常用輔助線作法作業(yè):必做題:《伴你學(xué)》P33 110 選做題:《伴你學(xué)》P34 12 設(shè)計意圖:總結(jié)回顧,培養(yǎng)學(xué)生的知識整理能力與語言表達(dá)能力,這種發(fā)自內(nèi)心的問題,幫助學(xué)生歸納和反思自我,通過課后獨立思考,自我評價學(xué)習(xí)效果。性質(zhì)2:等腰三角形的兩個底角相等。第二篇:等腰三角形教學(xué)設(shè)計教學(xué)設(shè)計等腰三角形一、目標(biāo)認(rèn)知 學(xué)習(xí)目標(biāo):通過觀察發(fā)現(xiàn)等腰三角形的性質(zhì);掌握等腰三角形的識別方法,會用等腰三角形的性質(zhì)進(jìn)行簡單的計算和證明;理解等腰三角形與等邊三角形的相互關(guān)系;能夠利用等腰三角形的識別方法判斷等腰三角形;掌握等邊三角形的特征和識別方法;掌握一般文字命題的解題方法重點:等腰三角形的性質(zhì)與判定。二、知識要點梳理知識點一:等腰三角形、腰、底邊有兩邊相等的三角形叫等腰三角形,其中相等的兩條邊叫腰,第三條邊叫底邊,兩腰的夾角叫頂角,底邊和腰的夾角叫底角如圖所示,在△ABC中,AB=AC,則它叫等腰三角形,其中AB、AC為腰,BC為底邊,∠A是頂角,∠B、∠C是底角.知識點二:等腰三角形的性質(zhì)性質(zhì)1:等腰三角形的兩個底角相等(簡稱“等邊對等角”).性質(zhì)2:等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合(簡稱“三線合一”).這兩個性質(zhì)證明如下:在△ABC中,AB=AC,如圖所示.作底邊BC的高AD,則有∴ Rt△ABD≌Rt△ACD.∴ ∠B=∠C,∠1=∠2.BD=CD.于是性質(zhì)性質(zhì)2均得證.說明:(1)①等腰三角形的性質(zhì)1用符號表示為:∵AB=AC,∴∠B=∠C;②性質(zhì)1是等腰三角形的一條重要(主要)性質(zhì),也是今后我們證明角相等的又一個重要依據(jù).(2)①性質(zhì)2實質(zhì)包含三條性質(zhì),符號表示為:∵ AB=AC,AD⊥BC,∠1=∠2,∴ BD=CD;或∵ AB=AC,BD=CD,∠l=∠2,∴ AD⊥BC.②性質(zhì)2的用途更為廣泛,可以用來證明線段相等,角相等,垂直關(guān)系等.(3)等腰三角形是軸對稱圖形,底邊上高(頂角平分線或底邊中線)所在直線是它的對稱軸,通常情況只有一條對稱軸.知識點三:等腰三角形的判定定理定理內(nèi)容及證明如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱“等角對等邊”),如圖所示.證明:在△ABC中,∠B=∠C,作AD⊥BC于D.則所以△ABD≌△ACD(AAS).所以,AB=AC.注意:①本定理的符號表示為:在△ABC中,∵∠B=∠C,∴AB=AC.②本定理可以判定一個三角形是等腰三角形,同時也是今后證明兩條線段相等的重要依據(jù).另外,等腰三角形的性質(zhì)和判定條件和結(jié)論正好相反,要注意區(qū)分,不要混淆. 知識點四:等邊三角形等邊三角形定義:三邊都相等的三角形叫等邊三角形如圖所示.注意:①由定義可知,等邊三角形是一種特殊的等腰三角形.也就是說等腰三角形包括等邊三角形.②等邊三角形具有等腰三角形的一切性質(zhì).知識點五:等邊三角形的性質(zhì)等邊三角形的性質(zhì):等邊三角形三個內(nèi)角都相等,并且每一個內(nèi)角都等于60176。.則有∠A=∠B=∠C=60176。的等腰三角形是等邊三角形.證明如下:(1)如下圖所示,若∠A=∠B=∠C,可由∠A=∠B得,AC=BC;由∠A=∠C得,AB=BC.所以AB=AC=BC.于是判定(1)成立.(2)如上圖所示,在△ABC中,AB=AC,若∠A=60176。于是∠A=∠B=∠C.由判定(1)得△ABC是等邊三角形;若∠B=60176。于是∠A=60176。所以判定(2)成立.知識點七:直角三角形性質(zhì)定理定理內(nèi)容:在直角三角形中,如果有一個銳角是30176?!螦=30176。.于是△是等邊三角形,故所以.即定理成立.三、規(guī)律方法指導(dǎo)1.等腰(邊)三角形是一個特殊的三角形,具有較多的特殊性質(zhì),有時幾何圖形中不存在等腰(邊)三角形,可根據(jù)已知條件和圖形
點擊復(fù)制文檔內(nèi)容
規(guī)章制度相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1