【摘要】函數(shù)的單調性和奇偶性(一)閱讀課本P58-P59,回答下列問題1、增函數(shù),減函數(shù)的定義;2、單調性,單調區(qū)間的定義.3、函數(shù)圖象如下圖,說出單調區(qū)間及其單調性.xy練習一1、求下列函數(shù)的單調區(qū)間(1)f(x)=x-1;(2)f(x)=-2x+3;(3)f(x)=2x2-x+2(4)f(x)=-x2-
2024-08-30 20:29
2024-11-18 20:13
【摘要】函數(shù)單調性與奇偶性經(jīng)典例題透析(一)講課人:張海青授課時間:2014年9月23日授課地點:教學樓二樓多媒體(二)授課對象:高三文科優(yōu)生授課過程:類型一、函數(shù)的單調性的證明 1.證明函數(shù)上的單調性. 證明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x10 則 ∵x10,x20,∴
2025-01-24 01:19
【摘要】函數(shù)的奇偶性與單調性(首先定義域必須關于原點對稱)(1)為奇函數(shù);為偶函數(shù);(2)奇函數(shù)在原點有定義(3)任一個定義域關于原點對稱的函數(shù)一定可以表示成一個奇函數(shù)和一個偶函數(shù)之和???即(奇)(偶).?(注:①先確定定義域;②單調性證明一定要用定義)?(1)定義:區(qū)間上任意兩個值,若時有,稱為上增函數(shù),若時有,稱為上
2025-05-25 01:41
【摘要】X學習目標:、余弦函數(shù)的奇偶性、單調性的意義;、單調性;重點:正、余弦函數(shù)的性質難點:正、余弦函數(shù)的性質.復習:正弦、余弦函數(shù)的圖象和性質x6?yo-?-12?3
2024-11-21 06:03
【摘要】高中數(shù)學必修1對數(shù)函數(shù)(3)單調性與奇偶性新課、復合函數(shù)單調性問題1)(xf)(xg)]([)]([xfgxgf或求下列函數(shù)的單調區(qū)間)1(2log)1(??xy)1(21log)2(??xy)23(22log)3(???xxy)32(212lo
2025-05-27 02:15
【摘要】正弦、余弦函數(shù)的性質X(奇偶性、單調性)正弦、余弦函數(shù)的圖象x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx(x?R)
2024-11-22 03:01
【摘要】難點8關于奇偶性與單調性(二)函數(shù)的單調性、奇偶性是高考的重點和熱點內容之一,,掌握基本方法,形成應用意識.●難點磁場(★★★★★)已知偶函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(2)=0,解不等式f[log2(x2+5x+4)]≥0.●案例探究[例1]已知奇函數(shù)f(x)是定義在(-3,3)上的減函數(shù),且滿足不等式f(x-3)+f(x2-3)0,設不等式解
2025-04-13 05:16
【摘要】函數(shù)單調性和奇偶性一、選擇題(每小題5分,一共12道小題,總分60分)1.命題“若都是偶數(shù),則也是偶數(shù)”的逆否命題是()A.若不是偶數(shù),則與都不是偶數(shù)B.若是偶數(shù),則與不都是偶數(shù)C.若是偶數(shù),則與都不是偶數(shù)D.若不是偶數(shù),則與不都是偶數(shù)2.下列函數(shù)是偶函數(shù)的是()A.B.C.D.3.下列函數(shù)中,在其定
2025-04-02 12:16
【摘要】典型例題函數(shù)的單調性和奇偶性例1?(1)畫出函數(shù)y=-x2+2|x|+3的圖像,并指出函數(shù)的單調區(qū)間.解:函數(shù)圖像如下圖所示,當x≥0時,y=-x2+2x+3=-(x-1)2+4;當x<0時,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函數(shù)是增函數(shù):在[-1,0]和[1,+∞)上,函數(shù)是減函數(shù).評析?函數(shù)單調性是對某個
2025-04-02 12:17
【摘要】1函數(shù)的單調性與奇偶性講義一,目的要求:(1)理解函數(shù)單調性的概念,掌握用定義的方法來判斷函數(shù)在給定區(qū)間內的增減性。(2)理解函數(shù)奇偶性的概念,掌握奇偶函數(shù)的性質。(3)結合函數(shù)的單調性和奇偶性,掌握類似判斷函數(shù)值大小等各類綜合運用問題。二,知識要點:(1)函數(shù)的單調性設函數(shù)的定義域為,區(qū)間。如果對于上任意的兩點及,當()fxDI?I1x2時,不等
2024-08-19 14:15
【摘要】(一)課型:新授課教學目標:(1)知識與能力:理解增函數(shù)、減函數(shù)、單調區(qū)間、單調性等概念,掌握增(減)函數(shù)的證明和判別,學會運用函數(shù)圖象理解和研究函數(shù)的性質。(2)過程與方法:引導學生通過觀察,歸納,抽象,概括自主構建單調性的概念,使學生領會數(shù)形結合的思想方法。(3)情感,態(tài)度,價值觀:培養(yǎng)學生主動探索,敢于創(chuàng)新的意識和精神,使學生理性思考生活中的增長和遞減的現(xiàn)象。
2024-08-09 05:18
【摘要】復合函數(shù)的單調性和奇偶性 1、復合函數(shù)的概念 如果是的函數(shù),又是的函數(shù),即,,那么關于的函數(shù)叫做函數(shù)和的復合函數(shù),其中是中間變量,自變量為函數(shù)值為?!±纾汉瘮?shù)是由和復合而成。2、復合函數(shù)單調性復合函數(shù)單調性判定方法:定理:設函數(shù)u=g(x)在區(qū)間M上有意義,函數(shù)y=f(u)在區(qū)間N上有意義,且當X∈M時,u∈N。增函數(shù)增函數(shù)增函數(shù)增函
2025-04-13 04:22
【摘要】函數(shù)單調性、奇偶性練習一、選擇題1.若函數(shù)f(x)=x(x∈R),則函數(shù)y=-f(x)在其定義域內是( )A.單調遞增的偶函數(shù) B.單調遞增的奇函數(shù)C.單調遞減的偶函數(shù) D.單調遞減的奇函數(shù)2.下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是( )A.f(x)=x+ B.f(x)=x2-C.f(x)= D.f(x)=x33.已知y=f(x)是定義在
2025-06-27 20:37
【摘要】 函數(shù)的單調性和奇偶性一、目標認知學習目標: 、奇偶性定義; 、證明函數(shù)在給定區(qū)間上的單調性; ??; .重點、難點: ??; .二、知識要點梳理 (1)增函數(shù)、減函數(shù)的概念 一般地,設函數(shù)f(x)的定義域為A,區(qū)間 如果對于M內的任意兩個自變量的值x1、x2,當x1<x2時,都
2024-08-20 02:38