【摘要】函數(shù)的性質(zhì)的運(yùn)用1.若函數(shù)是奇函數(shù),則下列坐標(biāo)表示的點(diǎn)一定在函數(shù)圖象上的是()A.B.C.D.2.已知函數(shù)是奇函數(shù),則的值為()A.B.C.D.3.已知f(x)是偶函數(shù),g(x)是奇函數(shù),若,則f(x)的解析式為_______.4.已知函數(shù)f(x)為偶函數(shù),且其圖象與x軸有四個(gè)交點(diǎn),
2025-04-02 12:16
【摘要】函數(shù)單調(diào)性和奇偶性專題1.知識(shí)點(diǎn)精講:一、單調(diào)性:一、函數(shù)單調(diào)性的定義及性質(zhì)(1)定義對(duì)于給定區(qū)間上的函數(shù),如果對(duì)任意,當(dāng),都有,那么就稱在區(qū)間上是增函數(shù);當(dāng),都有,那么就稱在區(qū)間上是減函數(shù).與之相等價(jià)的定義:⑴,〔或都有〕則說在這個(gè)區(qū)間上是增函數(shù)(或減函數(shù))。其幾何意義為:增(減)函數(shù)圖象上的任意兩點(diǎn)連線的斜率都大于(或小于)0。(2)函數(shù)的單調(diào)區(qū)間
【摘要】函數(shù)單調(diào)性奇偶性經(jīng)典練習(xí)一、單調(diào)性題型高考中函數(shù)單調(diào)性在高中函數(shù)知識(shí)模塊里面主要作為工具或條件使用,也有很多題會(huì)以判斷單調(diào)性單獨(dú)出題或有的題會(huì)要求先判斷函數(shù)單調(diào)性才能進(jìn)行下一步驟解答,另有部分以函數(shù)單調(diào)性質(zhì)的運(yùn)用為主.(一)函數(shù)單調(diào)性的判斷函數(shù)單調(diào)性判斷常用方法:例1證明函數(shù)在區(qū)間上為減函數(shù)(定義法)解析:用定義法證明函數(shù)的單調(diào)性,按步驟“一假設(shè)、二作差、三判斷(
【摘要】函數(shù)的單調(diào)性和奇偶性(一)閱讀課本P58-P59,回答下列問題1、增函數(shù),減函數(shù)的定義;2、單調(diào)性,單調(diào)區(qū)間的定義.3、函數(shù)圖象如下圖,說出單調(diào)區(qū)間及其單調(diào)性.xy練習(xí)一1、求下列函數(shù)的單調(diào)區(qū)間(1)f(x)=x-1;(2)f(x)=-2x+3;(3)f(x)=2x2-x+2(4)f(x)=-x2-
2024-08-30 20:29
2024-11-18 20:13
【摘要】函數(shù)單調(diào)性與奇偶性經(jīng)典例題透析(一)講課人:張海青授課時(shí)間:2014年9月23日授課地點(diǎn):教學(xué)樓二樓多媒體(二)授課對(duì)象:高三文科優(yōu)生授課過程:類型一、函數(shù)的單調(diào)性的證明 1.證明函數(shù)上的單調(diào)性. 證明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x10 則 ∵x10,x20,∴
2025-01-24 01:19
【摘要】函數(shù)的奇偶性與單調(diào)性(首先定義域必須關(guān)于原點(diǎn)對(duì)稱)(1)為奇函數(shù);為偶函數(shù);(2)奇函數(shù)在原點(diǎn)有定義(3)任一個(gè)定義域關(guān)于原點(diǎn)對(duì)稱的函數(shù)一定可以表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)之和???即(奇)(偶).?(注:①先確定定義域;②單調(diào)性證明一定要用定義)?(1)定義:區(qū)間上任意兩個(gè)值,若時(shí)有,稱為上增函數(shù),若時(shí)有,稱為上
2025-05-25 01:41
【摘要】引入課題:f(x)=x2,求f(0),f(-1),f(1),f(-2),f(2),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(0)=0,f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(x)=x3,求f(0),f(-1),f(1)f(-2),f
2024-12-08 19:31
【摘要】X學(xué)習(xí)目標(biāo):、余弦函數(shù)的奇偶性、單調(diào)性的意義;、單調(diào)性;重點(diǎn):正、余弦函數(shù)的性質(zhì)難點(diǎn):正、余弦函數(shù)的性質(zhì).復(fù)習(xí):正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3
2024-11-21 06:03
【摘要】高中數(shù)學(xué)必修1對(duì)數(shù)函數(shù)(3)單調(diào)性與奇偶性新課、復(fù)合函數(shù)單調(diào)性問題1)(xf)(xg)]([)]([xfgxgf或求下列函數(shù)的單調(diào)區(qū)間)1(2log)1(??xy)1(21log)2(??xy)23(22log)3(???xxy)32(212lo
2025-05-27 02:15
【摘要】正弦、余弦函數(shù)的性質(zhì)X(奇偶性、單調(diào)性)正弦、余弦函數(shù)的圖象x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx(x?R)
2024-11-22 03:01
【摘要】函數(shù)單調(diào)性和奇偶性一、選擇題(每小題5分,一共12道小題,總分60分)1.命題“若都是偶數(shù),則也是偶數(shù)”的逆否命題是()A.若不是偶數(shù),則與都不是偶數(shù)B.若是偶數(shù),則與不都是偶數(shù)C.若是偶數(shù),則與都不是偶數(shù)D.若不是偶數(shù),則與不都是偶數(shù)2.下列函數(shù)是偶函數(shù)的是()A.B.C.D.3.下列函數(shù)中,在其定
【摘要】f(x)=x2,求f(-2),f(2),f(-1),f(1),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(-2)=f(2)f(-1)=f(1)f(-x)=f(x)-xxf(-x)f(x)xy
2024-08-31 01:30
【摘要】典型例題函數(shù)的單調(diào)性和奇偶性例1?(1)畫出函數(shù)y=-x2+2|x|+3的圖像,并指出函數(shù)的單調(diào)區(qū)間.解:函數(shù)圖像如下圖所示,當(dāng)x≥0時(shí),y=-x2+2x+3=-(x-1)2+4;當(dāng)x<0時(shí),y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函數(shù)是增函數(shù):在[-1,0]和[1,+∞)上,函數(shù)是減函數(shù).評(píng)析?函數(shù)單調(diào)性是對(duì)某個(gè)
2025-04-02 12:17
【摘要】1函數(shù)的單調(diào)性與奇偶性講義一,目的要求:(1)理解函數(shù)單調(diào)性的概念,掌握用定義的方法來判斷函數(shù)在給定區(qū)間內(nèi)的增減性。(2)理解函數(shù)奇偶性的概念,掌握奇偶函數(shù)的性質(zhì)。(3)結(jié)合函數(shù)的單調(diào)性和奇偶性,掌握類似判斷函數(shù)值大小等各類綜合運(yùn)用問題。二,知識(shí)要點(diǎn):(1)函數(shù)的單調(diào)性設(shè)函數(shù)的定義域?yàn)?,區(qū)間。如果對(duì)于上任意的兩點(diǎn)及,當(dāng)()fxDI?I1x2時(shí),不等
2025-08-13 14:15