【摘要】等比數(shù)列的前n項和(一)沙河二中高一數(shù)學(xué)組復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2024-11-25 19:50
【摘要】等比數(shù)列的前n項和教學(xué)過程推進新課[合作探究]師在對一般形式推導(dǎo)之前,我們先思考一個特殊的簡單情形:1+q+q2+?+qn=?師這個式子更突出表現(xiàn)了等比數(shù)列的特征,請同學(xué)們注意觀察生觀察、獨立思考、合作交流、自主探究師若將上式左邊的每一項乘以公比q,就出現(xiàn)了什么樣的結(jié)果呢?生q+q2+?+qn
2024-12-16 13:12
【摘要】等差數(shù)列與等比數(shù)列的類比等差數(shù)列等比數(shù)列定義首項、公差(公比)取值有無限制通項公式主要性質(zhì)1(2)nnaqna???11nnaaq??1(2)nnaadn????1(1)naand???(1)()nmaanmd???
2024-11-26 12:17
【摘要】等比數(shù)列的前n項和(第1課時)學(xué)習(xí)目標掌握等比數(shù)列的前n項和公式及公式證明思路.會用等比數(shù)列的前n項和公式解決一些有關(guān)等比數(shù)列的簡單問題.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境傳說國際象棋的發(fā)明人是印度的大臣西薩·班·達依爾,舍罕王為了表彰大臣的功績,準備對大臣進行獎賞.國王問大臣:“你
2024-12-16 20:21
【摘要】等比數(shù)列的前n項和教學(xué)過程導(dǎo)入新課師國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者.這個故事大家聽說過嗎?生知道一些,踴躍發(fā)言師“請在第一個格子里放上1顆麥粒,第二個格子里放上2顆麥粒,第三個格子里放上4顆麥粒,以此類推.每一個格子里放的麥粒都是前一個格子里放的麥粒的2倍.直到第64個
2024-11-27 21:23
【摘要】等比數(shù)列的前n項和第一課時::an=amqn-m2.通項公式:an=a1qn-1等比數(shù)列要點整理4.性質(zhì):若m、n、p、q∈N*,m+n=p+q,則am·an=ap·a
【摘要】等比數(shù)列的前n項和(第2課時)學(xué)習(xí)目標掌握等比數(shù)列的前n項和公式,能用等比數(shù)列的前n項和公式解決相關(guān)問題.通過等比數(shù)列的前n項和公式的推導(dǎo)過程,體會“錯位相減法”以及分類討論的思想方法.通過對等比數(shù)列的學(xué)習(xí),發(fā)展數(shù)學(xué)應(yīng)用意識,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值,發(fā)展數(shù)學(xué)的理性思維.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情
2024-12-17 03:41
【摘要】《等比數(shù)列前n項和》(第二課時)作業(yè)1、在等比數(shù)列中,3,6432321???????aaaaaa,則?????76543aaaaa()A.811B.1619C.89D.432、在等比數(shù)列??na中,55,551??Sa,則公
2024-11-23 21:17
【摘要】復(fù)習(xí):1,00nnnnaaqnNqaa???????⑴{}成等比數(shù)列()(2)通項公式:)0(111?????qaqaann)0(1?????qaqaamnmn國際象棋盤內(nèi)麥子數(shù)“爆炸”傳說西塔發(fā)明了國際象棋而使國王十分高興,他決定要重賞西塔,西塔說:“
2024-11-25 19:35
【摘要】等比數(shù)列的前n項和第二課時一、復(fù)習(xí)等比數(shù)列的前n項和公式:1(1)(1)1????nnaqSqq1(1)1????nnaaqSqq由an=a1qn-1代入可得特別地,當q=1時,Sn=na1注意:“錯位相減法”的過程
【摘要】第一篇:高中數(shù)學(xué)新人教B版必修5 (1) 教學(xué)目標 1.掌握等比數(shù)列的前n項和公式及公式證明思路. 2.;啟發(fā)引導(dǎo)式教學(xué)法 教學(xué)過程(I)復(fù)習(xí)回顧(1)定義:(2)等比數(shù)列通項公式:(3)等...
2024-11-05 04:43
【摘要】等比數(shù)列的前n項和(第一課時)創(chuàng)設(shè)情境明總:在一個月中,我第一天給你一萬,以后每天比前一天多給你一萬元。林總:我第一天還你一分錢,以后每天還的錢是前一天的兩倍創(chuàng)設(shè)情境林總:哈哈!這么多錢!我可賺大了,我要是訂了兩個月,三個月那該多好??!果真如此嗎?創(chuàng)設(shè)情境請你們幫林總分析一下
2024-11-25 15:04
【摘要】第一頁,編輯于星期六:點三十四分。,2.5等比數(shù)列的前n項和第一課時等比數(shù)列前n項和公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十四分。,第四...
2024-10-22 18:54
【摘要】知識回顧1.等比數(shù)列的定義;2.等比數(shù)列的通項公式;3.等比數(shù)列的中項公式;4.等比數(shù)列的下標公式。問題探究????。和項的前,請推導(dǎo)等比數(shù)列公比為,中,前項為:等比數(shù)列 探究nnnSnaqaa1)(其中 請你證明:,都不為,,且:如果 探究*nnnn
2024-11-26 08:10
【摘要】2.等比數(shù)列的前n項和1.(1)等比數(shù)列的前n項和公式:當q≠1時,Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當q=1時,Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=