【摘要】等比數(shù)列的前n項和教學過程推進新課[合作探究]師在對一般形式推導之前,我們先思考一個特殊的簡單情形:1+q+q2+?+qn=?師這個式子更突出表現(xiàn)了等比數(shù)列的特征,請同學們注意觀察生觀察、獨立思考、合作交流、自主探究師若將上式左邊的每一項乘以公比q,就出現(xiàn)了什么樣的結(jié)果呢?生q+q2+?+qn
2024-12-16 13:12
【摘要】等比數(shù)列的前n項和教學過程導入新課師國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者.這個故事大家聽說過嗎?生知道一些,踴躍發(fā)言師“請在第一個格子里放上1顆麥粒,第二個格子里放上2顆麥粒,第三個格子里放上4顆麥粒,以此類推.每一個格子里放的麥粒都是前一個格子里放的麥粒的2倍.直到第64個
2024-11-27 21:23
【摘要】等比數(shù)列的前n項和講授新課[提出問題]課本“國王對國際象棋的發(fā)明者的獎勵”[分析問題]如果把各格所放的麥粒數(shù)看成是一個數(shù)列,我們可以得到一個等比數(shù)列,它的首項是1,公比是2,求第一個格子到第64個格子各格所放的麥粒數(shù)總合就是求這個等比數(shù)列的前64項的和。下面我們先來推導等比數(shù)列的前n項和公式。1、等比數(shù)列的前n項和公
2024-12-17 03:41
【摘要】等差數(shù)列與等比數(shù)列的類比等差數(shù)列等比數(shù)列定義首項、公差(公比)取值有無限制通項公式主要性質(zhì)1(2)nnaqna???11nnaaq??1(2)nnaadn????1(1)naand???(1)()nmaanmd???
2024-11-26 12:17
【摘要】等比數(shù)列的前n項和A組基礎(chǔ)鞏固1.若數(shù)列{an}的前n項和為Sn=3n+a(a為常數(shù)),則數(shù)列{an}是()A.等比數(shù)列B.僅當a=-1時,是等比數(shù)列C.不是等比數(shù)列D.僅當a=0時,是等比數(shù)列解析:an=?????S1n=,Sn-Sn-1n=?????
【摘要】等比數(shù)列的綜合應(yīng)用A組基礎(chǔ)鞏固1.已知等比數(shù)列的公比為2,且前5項和為1,那么前10項和等于()A.31B.33C.35D.37解析:根據(jù)等比數(shù)列性質(zhì)得S10-S5S5=q5,∴S10-11=25,∴S10=33.答案:B2.在等比數(shù)列{an}中,S4=1,S8=
【摘要】等比數(shù)列的前n項和(第一課時)創(chuàng)設(shè)情境明總:在一個月中,我第一天給你一萬,以后每天比前一天多給你一萬元。林總:我第一天還你一分錢,以后每天還的錢是前一天的兩倍創(chuàng)設(shè)情境林總:哈哈!這么多錢!我可賺大了,我要是訂了兩個月,三個月那該多好?。」嫒绱藛?創(chuàng)設(shè)情境請你們幫林總分析一下
2024-11-25 15:04
【摘要】第一頁,編輯于星期六:點三十四分。,2.5等比數(shù)列的前n項和第一課時等比數(shù)列前n項和公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四...
2024-10-22 18:54
【摘要】主講老師:陳震等比數(shù)列的前n項和(一)復習引入1.等比數(shù)列的定義:2.等比數(shù)列通項公式:)0,(111????qaqaann)0,(1????qaqaamnmn復習引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-01-13 11:53
【摘要】等比數(shù)列的前n項和第一課時::an=amqn-m2.通項公式:an=a1qn-1等比數(shù)列要點整理4.性質(zhì):若m、n、p、q∈N*,m+n=p+q,則am·an=ap·a
【摘要】《等比數(shù)列前n項和》(第二課時)作業(yè)1、在等比數(shù)列中,3,6432321???????aaaaaa,則?????76543aaaaa()A.811B.1619C.89D.432、在等比數(shù)列??na中,55,551??Sa,則公
2024-11-23 21:17
【摘要】等比數(shù)列的前n項和第二課時一、復習等比數(shù)列的前n項和公式:1(1)(1)1????nnaqSqq1(1)1????nnaaqSqq由an=a1qn-1代入可得特別地,當q=1時,Sn=na1注意:“錯位相減法”的過程
2024-11-25 19:50
【摘要】2.等比數(shù)列的前n項和學習目標預習導學典例精析欄目鏈接情景導入九章算術(shù)有一道“耗子穿墻”的問題:今有垣厚5尺,兩鼠相對,大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半,問幾何日相逢?各穿幾何?在實際上是一個等比數(shù)列求和的問題,他的解法也很
2024-11-25 23:16
【摘要】2.等比數(shù)列的前n項和1.(1)等比數(shù)列的前n項和公式:當q≠1時,Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當q=1時,Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=
【摘要】(1)教學目標1.掌握等比數(shù)列的前n項和公式及公式證明思路.2.會用等比數(shù)列的前n項和公式解決有關(guān)等比數(shù)列前n項和的一些簡單問題.教學重點1. 等比數(shù)列的前n項和公式;2. 等比數(shù)列的前n項和公式推導.教學難點靈活應(yīng)用公式解決有關(guān)問題
2025-06-13 16:48