【摘要】余弦定理(1)【學(xué)習(xí)目標(biāo)】1.掌握余弦定理的兩種表示形式;2.證明余弦定理的向量方法;3.運(yùn)用余弦定理解決兩類基本的解三角形問題.【重點(diǎn)難點(diǎn)】1.重點(diǎn):余弦定理的證明及其應(yīng)用.2.難點(diǎn):理解余弦定理的作用及其適用范圍.【學(xué)習(xí)過程】一、自主學(xué)習(xí):問題:在三角形中,已知兩角及一邊,或已知兩邊
2024-12-16 20:24
【摘要】余弦定理課件:在任一個(gè)三角形中,各邊和它所對(duì)角的正弦比相等,即===2R(R為△ABC外接圓半徑)AasinBbsinCcsin:從理論上正弦定理可解決兩類問題:1.兩角和任意一邊,求其它兩邊和一角;2.兩邊和其中一邊對(duì)角,求另一邊的
2024-11-26 12:09
【摘要】第一章解三角形§正弦定理和余弦定理1.正弦定理(一)自主學(xué)習(xí)知識(shí)梳理1.一般地,把三角形的三個(gè)角A,B,C和它們的對(duì)邊a,b,c叫做三角形的________.已知三角形的幾個(gè)元素求其他元素的過程叫做____________.2.在Rt△ABC中,C=90°,則有
2024-11-27 23:20
【摘要】余弦定理(2)【學(xué)習(xí)目標(biāo)】1.利用余弦定理求三角形的邊長.2.利用余弦定理的變形公式求三角形的內(nèi)角.【重點(diǎn)難點(diǎn)】靈活運(yùn)用余弦定理求三角形邊長和內(nèi)角【學(xué)習(xí)過程】一、自主學(xué)習(xí):任務(wù)1:余弦定理:2a=____________2b=____________2c=__________
2024-12-17 03:49
【摘要】余弦定理A組基礎(chǔ)鞏固1.邊長為5,7,8的三角形的最大角與最小角之和為()A.90°B.120°C.135°D.150°解析:設(shè)長為7的邊所對(duì)的角為θ,由已知條件可知角θ為中間角.∵cosθ=52+82-7223538=
【摘要】第四課時(shí)余弦定理(二)一、學(xué)習(xí)目標(biāo):、余弦定理在解決各類三角形中的應(yīng)用。、余弦定理應(yīng)用范圍的認(rèn)識(shí),處理問題時(shí)能選擇較為簡捷的方法。3,。通過訓(xùn)練培養(yǎng)學(xué)生的分類討論,數(shù)形結(jié)合,優(yōu)化選擇等思想。二、學(xué)習(xí)重難點(diǎn):重點(diǎn):正、余弦定理的綜合運(yùn)用.難點(diǎn):、余弦定理與三角形性質(zhì)的結(jié)合;、余弦定理的聯(lián)系.三、自主預(yù)習(xí):四、能力技能交流:活動(dòng)一、靈活應(yīng)用
2025-06-13 23:27
【摘要】余弦定理(二)自主學(xué)習(xí)知識(shí)梳理1.在△ABC中,邊a、b、c所對(duì)的角分別為A、B、C,則有:(1)A+B+C=________,A+B2=____________.(2)sin(A+B)=__________,cos(A+B)=__________,tan(A+B)=_______
2024-11-30 21:33
【摘要】余弦定理(一)自主學(xué)習(xí)知識(shí)梳理1.余弦定理三角形中任何一邊的________等于其他兩邊的________的和減去這兩邊與它們的______的余弦的積的________.即a2=___________________,b2=__________________,c2=________________.2.余弦定
2024-12-06 12:00
【摘要】§應(yīng)用舉例(一)自主學(xué)習(xí)知識(shí)梳理1.實(shí)際問題中的常用角(1)仰角和俯角在視線和水平線所成的角中,視線在水平線________的角叫仰角,在水平線________的角叫俯角(如圖①).(2)方位角指從正北方向________轉(zhuǎn)到目標(biāo)方向線的水平角,如B點(diǎn)的方位角為α(如圖②)
【摘要】高一數(shù)學(xué)必修5導(dǎo)學(xué)案第五課時(shí):正弦定理、余弦定理的應(yīng)用(1)一、學(xué)習(xí)目標(biāo)(1)綜合運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決與測(cè)量學(xué)、航海問題等有關(guān)的實(shí)際問題;(2)體會(huì)數(shù)學(xué)建摸的基本思想,掌握求解實(shí)際問題的一般步驟;(3)能夠從閱讀理解、信息遷移、數(shù)學(xué)化方法、創(chuàng)造性思維等方面,多角度培養(yǎng)學(xué)生分析問題和解決問題的能力.二、學(xué)習(xí)重點(diǎn),難點(diǎn)重點(diǎn):(1)綜合運(yùn)用正弦定理、余
【摘要】正弦定理(二)自主學(xué)習(xí)知識(shí)梳理1.正弦定理:asinA=bsinB=csinC=2R的常見變形:(1)sinA∶sinB∶sinC=________;(2)asinA=bsinB=csinC=a+b+csinA+sinB+sinC=________;(3)a=____
2024-12-13 06:40
【摘要】2020年高中數(shù)學(xué)冪函數(shù)學(xué)案新人教B版必修1一、三維目標(biāo):1.理解冪函數(shù)的概念,會(huì)畫函數(shù)xy?,2xy?,3xy?,1??xy,21xy?的圖象.2.了解冪函數(shù)的圖象,理解冪函數(shù)圖象的變化情況和性質(zhì),并能進(jìn)行簡單的應(yīng)用.3.滲透辨證唯物主義觀點(diǎn)和方法論,培養(yǎng)學(xué)生運(yùn)用具體問題具體分析的方法分析問題、
2024-11-27 23:24
【摘要】弧度制(1)學(xué)習(xí)要點(diǎn):弧度制以及角度制與之換算關(guān)系。學(xué)習(xí)過程:(一)復(fù)習(xí):度量角的大小第一種單位制—角度制的定義。(二)新課學(xué)習(xí):1.1弧度角的定義:長度等于的弧所對(duì)的圓心角稱為的角。如圖:?AOB=1rad
2024-11-26 16:46
【摘要】§正弦定理和余弦定理(3)教學(xué)目標(biāo):1、知識(shí)與技能:進(jìn)一步熟悉正、余弦定理內(nèi)容,能夠熟練應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化,進(jìn)而判斷三角形的形狀或求值.2、過程與方法:讓學(xué)生從正、余弦定理的變形出發(fā),得到邊角互化的關(guān)系式,引導(dǎo)學(xué)生利用這個(gè)關(guān)系實(shí)現(xiàn)三角關(guān)系中的邊或角的統(tǒng)一,再利用已學(xué)的三角變換或代數(shù)變換解決問題.3、情感與價(jià)值:
2024-11-27 16:13
【摘要】習(xí)題課正弦定理和余弦定理的應(yīng)用雙基達(dá)標(biāo)限時(shí)20分鐘1.在△ABC中,已知cosAcosBsinAsinB,則△ABC是().A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形解析cosAcosBsinAsinB?cos(A+B)0,∴A+B9
2024-12-05 23:51