【摘要】數(shù)列的概念、通項(xiàng)公式和遞推公式期末復(fù)習(xí)一、數(shù)列的概念:數(shù)列.項(xiàng)是關(guān)于項(xiàng)數(shù)的一種特殊的函數(shù)關(guān)系,只是定義域是自小到大的正整數(shù)而已.:通項(xiàng)公式法,遞推公式法,前n項(xiàng)和法,和圖像法等.(圖像是自變量取正整數(shù)的一些孤立的點(diǎn))二、數(shù)列的通項(xiàng)公式:???Nnnfananannn),(:.
2025-05-13 12:07
【摘要】高一數(shù)學(xué)必修五第二章《數(shù)列》數(shù)列求和復(fù)習(xí)鞏固;;;;;:一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和,若通項(xiàng)形如an=(-1)nf(n)的擺動(dòng)數(shù)列求和,可用此法。求數(shù)列Sn=12-22+32-42+…+(-1)n-
2025-01-13 11:54
【摘要】方法,并能根據(jù)遞推公式求出滿足條件的項(xiàng).法.1,2,2,3,3,3,4,4,4,4,5100A.14B.12C.131.(D2010.
2025-01-24 16:24
【摘要】等比數(shù)列的通項(xiàng)公式(2)陽(yáng)光國(guó)際學(xué)校高中部數(shù)學(xué)組復(fù)習(xí)一.等比數(shù)列的定義二.等比數(shù)列的通項(xiàng)公式an=a1qn-1q0時(shí),數(shù)列各項(xiàng)同號(hào)q0時(shí),數(shù)列各項(xiàng)正負(fù)相間①{an}是等比數(shù)列?=q(q是常數(shù),n∈N*
2024-11-20 16:41
【摘要】本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理1本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2一、請(qǐng)回答下列概念:1.數(shù)列的定義:2.數(shù)列的通項(xiàng)公式:::按一定次序排列的一列數(shù)叫做數(shù)列.如果數(shù)列的第n項(xiàng)與n
2024-11-25 12:14
【摘要】本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理1等差數(shù)列的概念及通項(xiàng)公式本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2?學(xué)習(xí)目標(biāo):,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題..本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理3復(fù)習(xí)數(shù)列的有關(guān)概念
2024-11-25 05:40
【摘要】高考遞推數(shù)列題型分類歸納解析各種數(shù)列問(wèn)題在很多情形下,就是對(duì)數(shù)列通項(xiàng)公式的求解。特別是在一些綜合性比較強(qiáng)的數(shù)列問(wèn)題中,數(shù)列通項(xiàng)公式的求解問(wèn)題往往是解決數(shù)列難題的瓶頸。本文總結(jié)出幾種求解數(shù)列通項(xiàng)公式的方法,希望能對(duì)大家有幫助。類型1解法:把原遞推公式轉(zhuǎn)化為,利用累加法(逐差相加法)求解。例:已知數(shù)列滿足,,求。解:由條件知:分別令,代入上式得個(gè)等式累加之,即
2025-04-13 23:13
【摘要】及通項(xiàng)公式?學(xué)習(xí)目標(biāo):,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題..復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用
2024-11-17 03:51
2024-11-20 18:09
【摘要】求遞推數(shù)列通項(xiàng)公式的常用方法歸納目錄一、概述183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。
2024-10-27 20:27
【摘要】
【摘要】遞推數(shù)列通項(xiàng)公式之題根研究遞推數(shù)列通項(xiàng)公式之的題根研究055350河北隆堯一中焦景會(huì)電話13085848802[題根]數(shù)列滿足,,求通項(xiàng)公式。[分析]此為型遞推數(shù)列,構(gòu)造新數(shù)列,轉(zhuǎn)化成等比數(shù)列求解。[解答]在兩邊加1,得,則數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,得,即為所求。[規(guī)律小結(jié)]型遞推數(shù)列,當(dāng)p=1時(shí),數(shù)列為等
2025-06-13 22:59
【摘要】轉(zhuǎn)化法巧用換元法引入其他方法競(jìng)賽輔導(dǎo)-數(shù)列(二)由數(shù)列的遞推公式求通項(xiàng)公式遞推數(shù)列有關(guān)概念:①遞推公式:一個(gè)數(shù)列{}na中的第n項(xiàng)na與它前面若干項(xiàng)1na?,2na?,…,nka?(kn?)的關(guān)系式稱為遞推公式.②遞推數(shù)列:由遞推公式和
2024-08-18 19:41
【摘要】第五節(jié)數(shù)列求和基礎(chǔ)梳理數(shù)列求和的常用方法(1)公式法①直接用等差、等比數(shù)列的求和公式.②掌握一些常見(jiàn)的數(shù)列的前n項(xiàng)和.1+2+3+…+n=____________;1+3+5+…+(2n-1)=______.(1)2nn?n2(2)倒序相加法如果一個(gè)數(shù)列{
2024-11-20 18:12
【摘要】第四節(jié)數(shù)列的通項(xiàng)基礎(chǔ)梳理:如果數(shù)列{an}的________________之間的關(guān)系可以用一個(gè)公式來(lái)表示,那么這個(gè)公式叫做這個(gè)數(shù)列的通項(xiàng)公式.第n項(xiàng)與它的序號(hào)n2.數(shù)列的遞推公式:如果已知數(shù)列{an}的首項(xiàng)(或者前幾項(xiàng)),且任意一項(xiàng)an與an-1(或其前面的項(xiàng))之間的關(guān)系可以______________,那么
2024-11-17 08:08