【摘要】......用待定系數(shù)法求遞推數(shù)列通項(xiàng)公式初探摘要:本文通過用待定系數(shù)法分析求解9個遞推數(shù)列的例題,得出適用待定系數(shù)法求其通項(xiàng)公式的七種類型的遞
2025-07-01 16:48
【摘要】高二數(shù)學(xué)導(dǎo)學(xué)案GRSX5-33常見遞推數(shù)列通項(xiàng)公式的求法高二數(shù)學(xué)備課組編一、學(xué)習(xí)目標(biāo):1.運(yùn)用累加、累乘、待定系數(shù)等方法求數(shù)列的通項(xiàng)公式。2.培養(yǎng)學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣;二、重點(diǎn)
2025-04-23 00:58
【摘要】高一數(shù)學(xué)必修五第二章《數(shù)列》數(shù)列求和復(fù)習(xí)鞏固;;;;;:一個數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和,若通項(xiàng)形如an=(-1)nf(n)的擺動數(shù)列求和,可用此法。求數(shù)列Sn=12-22+32-42+…+(-1)n-
2025-01-13 11:54
【摘要】求遞推數(shù)列通項(xiàng)公式的常用方法歸納目錄一、概述183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。183。
2024-10-27 20:27
【摘要】高考數(shù)列通項(xiàng)公式研究畢業(yè)論文目錄引言…………………………………………………………………………11求通項(xiàng)公式的方法……………………………………………………………12求通項(xiàng)公式方法選擇策略…………………………………………………123求通項(xiàng)公式注意的問題………………………………………………………13參考文獻(xiàn)…………………………………………………………………
2025-04-23 13:06
【摘要】......求遞推數(shù)列通項(xiàng)公式的十種策略例析遞推數(shù)列的題型多樣,求遞推數(shù)列的通項(xiàng)公式的方法也非常靈活,往往可以通過適當(dāng)?shù)牟呗詫栴}化歸為等差數(shù)列或等比數(shù)列問題加以解決,亦可采用不完全歸納法的方法,由特殊情形推導(dǎo)出一般情形,進(jìn)而用數(shù)學(xué)歸納法加以證明,因而求遞推數(shù)列的通項(xiàng)公式問題成為了高考命題中頗受青睞的考查內(nèi)容。筆者試給出求遞推數(shù)列通項(xiàng)
2025-07-03 04:51
【摘要】由遞推公式求通項(xiàng)公式的常用方法由數(shù)列的遞推公式求通項(xiàng)公式是高中數(shù)學(xué)的重點(diǎn)問題,也是難點(diǎn)問題,它是歷年高考命題的熱點(diǎn)題。對于遞推公式確定的數(shù)列的求解,通常可以通過遞推公式的變換,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列問題,有時也用到一些特殊的轉(zhuǎn)化方法與特殊數(shù)列。方法一:累加法形如an+1-an=f(n)(n=2,3,4,…),且f(1)+f(2)+…+f(n-1)可求,則用累加法求an。有時若不能直
2025-06-24 13:57
【摘要】用心愛心專心遞推數(shù)列通項(xiàng)求解方法舉隅類型一:1nnapaq???(1p?)思路1(遞推法):??123()nnnnapaqppaqqpppaqqq?????????????????……121(1npaqpp??????…211)
2024-09-12 00:31
【摘要】......數(shù)列的通項(xiàng)公式教學(xué)目標(biāo):使學(xué)生掌握求數(shù)列通項(xiàng)公式的常用方法.教學(xué)重點(diǎn):運(yùn)用疊加法、疊乘法、構(gòu)造成等差或等比數(shù)列及運(yùn)用求數(shù)列的通項(xiàng)公式.教學(xué)難點(diǎn):構(gòu)造成等差或等比數(shù)列及運(yùn)用求數(shù)列的通項(xiàng)公式的方法.教學(xué)時數(shù):2課
2025-04-23 04:59
【摘要】海豚教育個性化簡案學(xué)生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計(jì):小時教學(xué)目標(biāo)1.復(fù)習(xí)等差數(shù)列和等比數(shù)列的基本定義;2.學(xué)會通過作差法
2024-08-17 10:15
【摘要】課時作業(yè)5 數(shù)列的遞推公式(選學(xué))時間:45分鐘 滿分:100分課堂訓(xùn)練1.在數(shù)列{an}中,a1=,an=(-1)n·2an-1(n≥2),則a5=( )A.- B.C.- D.【答案】 B【解析】 由an=(-1)n·2an-1知a2=,a3=-2a2=-,a4=2a3=-,a5=-2a4=.2.某數(shù)列第一項(xiàng)為1,
2025-03-31 02:52
【摘要】......數(shù)列通項(xiàng)公式的常見求法數(shù)列在高中數(shù)學(xué)中占有非常重要的地位,每年高考都會出現(xiàn)有關(guān)數(shù)列的方面的試題,一般分為小題和大題兩種題型,而數(shù)列的通項(xiàng)公式的求法是??嫉囊粋€知識點(diǎn),一般常出現(xiàn)在大題的第一小問中,因此掌握好數(shù)列通項(xiàng)公式的
2025-07-02 05:23
【摘要】數(shù)列通項(xiàng)公式的求法集錦非等比、等差數(shù)列的通項(xiàng)公式的求法,題型繁雜,方法瑣碎結(jié)合近幾年的高考情況,對數(shù)列求通項(xiàng)公式的方法給以歸納總結(jié)。一、累加法形如(n=2、3、4…...)且可求,則用累加法求。有時若不能直接用,可變形成這種形式,然后用這種方法求解。例1.在數(shù)列{}中,=1,(n=2、3、4……),求{}的通項(xiàng)公式。解:∵這n-1個等式累加得:=
2025-07-02 05:28
【摘要】轉(zhuǎn)化法巧用換元法引入其他方法競賽輔導(dǎo)-數(shù)列(二)由數(shù)列的遞推公式求通項(xiàng)公式遞推數(shù)列有關(guān)概念:①遞推公式:一個數(shù)列{}na中的第n項(xiàng)na與它前面若干項(xiàng)1na?,2na?,…,nka?(kn?)的關(guān)系式稱為遞推公式.②遞推數(shù)列:由遞推公式和
2024-08-18 19:41
【摘要】由遞推公式求數(shù)列通項(xiàng)的幾種常見的方法例1:(2020年全國高考試題文)一:累加法(2020年全國高考試題)二:累乘法例3:(2020年全國高考試題北京卷)三:待定系數(shù)法四:倒數(shù)法六:數(shù)學(xué)歸納法(歸納—猜想—證明)例5(2020年春季安徽理)小結(jié)六:數(shù)學(xué)歸納
2024-11-18 02:30