【摘要】排列組合的綜合應(yīng)用例1將4個(gè)不同的小球放入4個(gè)不同的盒子里,求在下列條件下各有多少種不同的放法.(1)恰有一個(gè)盒子里放2個(gè)球;(2)恰有兩個(gè)盒子是空盒.()23441144NCA==3222444412842NCACA=+=()典例講評(píng)例
2024-11-17 08:09
【摘要】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問(wèn)有多少不同的種法?例2:要排一個(gè)有5個(gè)獨(dú)唱節(jié)目和3個(gè)舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個(gè)舞蹈節(jié)目不連排,則不同的排法有幾種?小結(jié):當(dāng)排列或組合問(wèn)題中,若某些元素或某些位置有特殊要求的時(shí)候,那么,一般先按排這些特殊元素或位置,然后再
2024-08-29 02:06
【摘要】排列,組合問(wèn)題的解答策略第四節(jié)相鄰問(wèn)題捆綁法?例13:6名同學(xué)排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個(gè)??例15:計(jì)劃在某畫(huà)廊展開(kāi)10幅不同的畫(huà),
2024-11-18 22:56
【摘要】;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題。提高學(xué)生解決問(wèn)題分析問(wèn)題的能力合問(wèn)題.教學(xué)目標(biāo)計(jì)數(shù)原理。完成一件事,有n類(lèi)辦法,在第1類(lèi)辦法中有m1種不同的方法,在第2類(lèi)辦法中有m2種不同的方法,…,在第n類(lèi)辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-11-17 13:22
2024-08-18 19:14
【摘要】排列組合應(yīng)用題數(shù)學(xué)教研組盛建芳復(fù)習(xí)回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2024-08-28 23:43
【摘要】排列組合復(fù)習(xí)二、重點(diǎn)難點(diǎn)三、綜合練習(xí)四、復(fù)習(xí)建議一、知識(shí)結(jié)構(gòu)基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問(wèn)題一、知識(shí)結(jié)構(gòu)二、重點(diǎn)難點(diǎn)1.兩個(gè)基本原理
2024-11-26 00:34
【摘要】一,映射與排列組合問(wèn)題變式:同(2)257對(duì)集合A中元素進(jìn)行分類(lèi)。二,排列組合中的映射思維通過(guò)集合A與另一個(gè)集合B之間的映射關(guān)系,將對(duì)集合A中元素的計(jì)數(shù)問(wèn)題轉(zhuǎn)化為對(duì)集合B的計(jì)數(shù)。且A與B是一一對(duì)應(yīng)關(guān)系。三,構(gòu)造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2024-11-18 03:08
【摘要】例“歡樂(lè)今宵”節(jié)目中,拿出兩個(gè)信箱.其中存放著先后兩次競(jìng)猜中成績(jī)優(yōu)秀的觀眾來(lái)信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎(jiǎng)確定幸運(yùn)觀眾,若先確定一名“幸運(yùn)之星”,然后再?gòu)膬尚畔渲懈鞔_定一名幸運(yùn)伙伴,有多少種不同的結(jié)果?練習(xí).如圖,一個(gè)地區(qū)分為5個(gè)行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2024-11-17 06:20
【摘要】解決排列組合中涂色問(wèn)題的常見(jiàn)方法及策略與涂色問(wèn)題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,故這類(lèi)問(wèn)題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開(kāi)發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見(jiàn)類(lèi)型及求解方法。一、區(qū)域涂色問(wèn)題1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①
2024-08-08 07:24
【摘要】排列組合問(wèn)題經(jīng)典題型與通用方法:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,則不同的排法有()A、60種B、48種C、36種D、24種:元素相離(即不相鄰)問(wèn)題,可先把無(wú)位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元素的空位和兩端.,如果甲乙兩個(gè)必須不相鄰,那么不同的排法種
2025-03-31 02:37
【摘要】高考數(shù)學(xué)中涂色問(wèn)題的常見(jiàn)解法及策略與涂色問(wèn)題有關(guān)的試題新穎有趣,近年已經(jīng)在高考題中出現(xiàn),其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,因而這類(lèi)問(wèn)題有利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開(kāi)發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見(jiàn)類(lèi)型及求解方法1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1。用5種不同的顏色給圖中
【摘要】二十種排列組合問(wèn)題的解法排列組合問(wèn)題聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,因此解決排列組合問(wèn)題,首先要認(rèn)真審題,弄清楚是排列問(wèn)題、組合問(wèn)題還是排列與組合綜合問(wèn)題;其次要抓住問(wèn)題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉?lái)處理.教學(xué)目標(biāo).;能運(yùn)用解題策略解決簡(jiǎn)單的綜合應(yīng)用題.提高學(xué)生解決問(wèn)題分析問(wèn)題的能力.復(fù)習(xí)鞏固(加法原理)完成一件事,有類(lèi)辦法,在第1類(lèi)辦法中
【摘要】例解排列組合中涂色問(wèn)題于涂色問(wèn)題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,故這類(lèi)問(wèn)題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開(kāi)發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見(jiàn)類(lèi)型及求解方法。一、區(qū)域涂色問(wèn)題1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①、②、③、④
2025-03-31 02:36
【摘要】1、基本概念和考點(diǎn)2、合理分類(lèi)和準(zhǔn)確分步3、特殊元素和特殊位置問(wèn)題4、相鄰相間問(wèn)題5、定序問(wèn)題6、分房問(wèn)題7、環(huán)排、多排問(wèn)題12、小集團(tuán)問(wèn)題10、先選后排問(wèn)題9、平均分組問(wèn)題11、構(gòu)造模型策略8、實(shí)驗(yàn)法(枚舉法)13、其它特殊方法排列組合應(yīng)用題解法綜述(目錄)名稱(chēng)內(nèi)容
2024-08-29 01:49