【摘要】函數(shù)的零點問題函數(shù)零點是新課標教材的新增內(nèi)容之一,縱觀近幾年全國各地的高考試題,經(jīng)常出現(xiàn)一些與零點有關(guān)的問題,它可以以選擇題、填空題的形式出現(xiàn),也可以在解答題中與其它知識交匯后閃亮登場,可以說”零點”成為了高考新的熱點、亮點和生長點.高考地位方程0)(?xf方程的實數(shù)根與
2024-11-30 01:56
【摘要】函數(shù)零點問題【教學目標】知識與技能:1.理解函數(shù)零點的定義以及函數(shù)的零點與方程的根之間的聯(lián)系,掌握用連續(xù)函數(shù)零點定理及函數(shù)圖像判斷函數(shù)零點所在的區(qū)間與方程的根所在的區(qū)間.2.結(jié)合幾類基本初
2025-03-30 12:18
【摘要】二次函數(shù)零點問題【探究拓展】探究1:設分別是實系數(shù)一元二次方程和的一個根,且求證:方程有且僅有一根介于之間.變式1:已知函數(shù)f(x)=ax2+4x+b(a0,a、b∈R),設關(guān)于x的方程f(x)=0的兩實根為x1、x2,方程f(x)=x的兩實根為α、β.(1)若|α-β|=1,求a、b的關(guān)系式;(2)若a、b均為負整數(shù)
2025-03-30 06:28
【摘要】10函數(shù)零點的個數(shù)問題一、知識點講解與分析:1、零點的定義:一般地,對于函數(shù),我們把方程的實數(shù)根稱為函數(shù)的零點2、函數(shù)零點存在性定理:設函數(shù)在閉區(qū)間上連續(xù),且,那么在開區(qū)間內(nèi)至少有函數(shù)的一個零點,即至少有一點,使得。(1)在上連續(xù)是使用零點存在性定理判定零點的前提(2)零點存在性定理中的幾個“不一定”(假設連續(xù))①若,則的零點不一定只有一個,可以有多個②若,
2025-03-30 04:05
2025-04-10 04:25
【摘要】復合函數(shù)圖像研究零點例1、求方程實數(shù)解的個數(shù)為個。例2、已知函數(shù)則下列關(guān)于函數(shù)的零點個數(shù)的判斷正確的是()A.當時,有3個零點;當時,有2個零點B.當時,有4個零點;當時,有1個零點C.無論為何值,均有2個零點D.無論為何值,均有4個零點例3、已知函數(shù)f(x)=,若關(guān)于x的方程f2(x)-bf(x)+c
2025-03-31 00:18
【摘要】導數(shù)問題中虛設零點的三大策略導數(shù)在高中數(shù)學中可謂“神通廣大”,是解決函數(shù)單調(diào)性、極值、最值、不等式證明等問題的“利器”.,,我們不必正面強求,可以采用將這個零點只設出來而不必求出來,然后謀求一種整體的轉(zhuǎn)換和過渡,再結(jié)合其他條件,“虛設零點”,來說明導數(shù)問題中“虛設零點”法的具體解題方法和策略.策略1整體代換將超越式化簡為普通式如果f′(x)是超越形式(對字母進行了有限次初等超越運算包
2025-03-31 00:40
【摘要】函數(shù)與方程一、考點聚焦1.函數(shù)零點的概念對于函數(shù),我們把使的實數(shù)x叫做函數(shù)的零點,注意以下幾點:(1)函數(shù)的零點是一個實數(shù),當函數(shù)的自變量取這個實數(shù)時,其函數(shù)值等于零。(2)函數(shù)的零點也就是函數(shù)的圖象與x軸的交點的橫坐標。(3)一般我們只討論函數(shù)的實數(shù)零點。(4)求零點就是求方程的實數(shù)根。2、函數(shù)零點的判斷如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的曲線,并且有,那么,
2025-05-22 02:09
【摘要】函數(shù)的零點【教學目標】1、了解函數(shù)零點的概念及函數(shù)零點的等價描述;2、能利用二次函數(shù)的圖象與判別式的符號,判斷一元二次方程根的存在性及根的個數(shù);3、理解判斷函數(shù)零點存在性的結(jié)論并能研究簡單的函數(shù)零點的存在性問題;4、體現(xiàn)、感受并理解方程和函數(shù)圖象在零點問題中的應用,滲透數(shù)形結(jié)合思想,運用數(shù)形結(jié)合來研究和解決數(shù)學問題,并能應用從特殊到一般的數(shù)學方法去探索和認識數(shù)學知識。
2025-04-22 23:40
【摘要】近年高考試卷中的N型函數(shù)零點個數(shù)問題賞析近些年來,有不少的N型函數(shù)零點個數(shù)問題出現(xiàn)在不同年份、不同省區(qū)與全國的高考試卷中,這不能不成為高考的熱門話題和需要我們研究并指導高三學生進行科學備考的一個重點內(nèi)容。什么是N型函數(shù)零點個數(shù)問題呢,就是含參函數(shù)在其定義域內(nèi)連續(xù)可導,有兩個極值點、并將其定義域分成三個單調(diào)區(qū)間,通常是“增減增”或“減增減”,在此條件的基礎上,方程或的根的個數(shù)與參數(shù)取值范圍
【摘要】利用導數(shù)研究方程的根和函數(shù)的零點5.(本小題滿分12分)已知函數(shù)且(I)試用含的代數(shù)式表示;(Ⅱ)求的單調(diào)區(qū)間;(Ⅲ)令,設函數(shù)在處取得極值,記點,證明:線段與曲線存在異于、的公共點;5.解法一:(I)依題意,得由得(Ⅱ)由(I)得(故令,則或
2025-06-22 22:23
【摘要】教你如何化整為零破難題教你如何規(guī)范解答不失分教你如何易錯警示要牢記壓軸大題巧突破壓軸大題巧突破(四)利用導數(shù)研究函數(shù)的零點或方程的根[典例](2022·山東高考)(13分)設函數(shù)+c(e=28…是自然對數(shù)的底數(shù),c∈R).
2025-08-11 03:43
【摘要】高考導數(shù)講義一:零點問題例1、設函數(shù)(I)求曲線在點處的切線方程;(II)設,若函數(shù)有三個不同零點,求c的取值范圍;(III)求證:是有三個不同零點的必要而不充分條件.解:(I)由,得.因為,,所以曲線在點處的切線方程為.(II)當時,,所以.令,得,解得或.與在區(qū)間上的情況如下:
2025-04-23 13:06
【摘要】利用導數(shù)研究方程的根和函數(shù)的零點總結(jié):?方程的根?方程的根1.設為實數(shù),函數(shù),當什么范圍內(nèi)取值時,曲線與軸僅有一個交點。2、已知函數(shù)f(x)=-x+8x,g(x)=6lnx+m(Ⅰ)求f(x)在區(qū)間[t,t+1]上的最大值h(t);(Ⅱ)是否存在實數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有三個不同的交點?若
2025-04-22 23:50
【摘要】函數(shù)零點的定義理解 函數(shù)的零點是函數(shù)圖象的一個重要的特征,同時也溝通了函數(shù)、方程、不等式以及算法等內(nèi)容,在分析解題思路、探求解題方法中起著重要的作用,因此要重視對函數(shù)零點的學習.下面就函數(shù)的零點判定中的幾個誤區(qū)進行剖析,希望對大家有所幫助.1.因"望文生義"而致誤 例1.函數(shù)的零點是 ( )?。粒 。拢 。茫?, D.1,2錯解:C錯解剖析:錯誤的原
2025-06-24 23:35