freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

屆高考數(shù)學(xué)知識點(diǎn)總結(jié)精華版-文庫吧資料

2025-03-29 07:29本頁面
  

【正文】 ,的反函數(shù)叫做反正切函數(shù),記作y=arctanx,它的定義域是(-∞,+∞),值域是.函數(shù)y=ctgx,[x∈(0,π)]的反函數(shù)叫做反余切函數(shù),記作y=arcctgx,它的定義域是(-∞,+∞),值域是(0,π).II. 競賽知識要點(diǎn)一、反三角函數(shù).1. 反三角函數(shù):⑴反正弦函數(shù)是奇函數(shù),故,(一定要注明定義域,若,沒有與一一對應(yīng),故無反函數(shù))注:,.⑵反余弦函數(shù)非奇非偶,但有,.注:①,.②是偶函數(shù),非奇非偶,而和為奇函數(shù).⑶反正切函數(shù):,定義域,值域(),是奇函數(shù),.注:,.⑷反余切函數(shù):,定義域,值域(),是非奇非偶.,.注:①,.②與互為奇函數(shù),同理為奇而與非奇非偶但滿足.⑵ 正弦、余弦、正切、余切函數(shù)的解集:的取值范圍 解集 的取值范圍 解集①的解集 ②的解集>1 >1 =1 =1 <1 <1 ③的解集: ③的解集:二、三角恒等式.組一組二組三 三角函數(shù)不等式<< 在上是減函數(shù)若,則高中數(shù)學(xué)第五章平面向量(1)向量的基本要素:大小和方向.(2)向量的表示:幾何表示法 ;字母表示:a;坐標(biāo)表示法 a=xi+yj=(x,y).(3)向量的長度:即向量的大小,記作|a|.(4)特殊的向量:零向量a=O|a|=O.單位向量aO為單位向量|aO|=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)(6) 相反向量:a=bb=aa+b=0(7)平行向量(共線向量):方向相同或相反的向量,∥.運(yùn)算類型幾何方法坐標(biāo)方法運(yùn)算性質(zhì)向量的加法向量的減法三角形法則,數(shù)乘向量,滿足:2.0時(shí), 同向。; 余弦線:OM。18ˊ. 1176。≈176。=57176。= 1176。)終邊相同的角的集合(角與角的終邊重合):②終邊在x軸上的角的集合: ③終邊在y軸上的角的集合:④終邊在坐標(biāo)軸上的角的集合: ⑤終邊在y=x軸上的角的集合: ⑥終邊在軸上的角的集合:⑦若角與角的終邊關(guān)于x軸對稱,則角與角的關(guān)系:⑧若角與角的終邊關(guān)于y軸對稱,則角與角的關(guān)系:⑨若角與角的終邊在一條直線上,則角與角的關(guān)系:⑩角與角的終邊互相垂直,則角與角的關(guān)系:2. 角度與弧度的互換關(guān)系:360176。 : 類似于等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法.1): 1+2+3+...+n = 2) 1+3+5+...+(2n1) = 3) 4) 5) 6) 三角函數(shù) 知識要點(diǎn)1. ①與(0176。 :適用于其中{ }是各項(xiàng)不為0的等差數(shù)列,c為常數(shù);部分無理數(shù)列、含階乘的數(shù)列等。在解含絕對值的數(shù)列最值問題時(shí),注意轉(zhuǎn)化思想的應(yīng)用。(3)中項(xiàng)公式法:驗(yàn)證都成立。4 , 5⑵看數(shù)列是不是等差數(shù)列有以下三種方法:①②2()③(為常數(shù)). ⑶看數(shù)列是不是等比數(shù)列有以下四種方法:①②(,)①注①:i. ,是a、b、c成等比的雙非條件,即a、b、c等比數(shù)列.ii. (ac>0)→為a、b、c等比數(shù)列的充分不必要.iii. →為a、b、c等比數(shù)列的必要不充分.iv. 且→為a、b、c等比數(shù)列的充要.注意:任意兩數(shù)a、c不一定有等比中項(xiàng),除非有ac>0,則等比中項(xiàng)一定有兩個(gè).③(為非零常數(shù)).④正數(shù)列{}成等比的充要條件是數(shù)列{}()成等比數(shù)列.⑷數(shù)列{}的前項(xiàng)和與通項(xiàng)的關(guān)系:[注]: ①(可為零也可不為零→為等差數(shù)列充要條件(即常數(shù)列也是等差數(shù)列)→若不為0,則是等差數(shù)列充分條件).②等差{}前n項(xiàng)和 →可以為零也可不為零→為等差的充要條件→若為零,則是等差數(shù)列的充分條件;若不為零,則是等差數(shù)列的充分條件. ③非零常數(shù)列既可為等比數(shù)列,也可為等差數(shù)列.(不是非零,即不可能有等比數(shù)列)2. ①等差數(shù)列依次每k項(xiàng)的和仍成等差數(shù)列,其公差為原公差的k2倍;②若等差數(shù)列的項(xiàng)數(shù)為2,則;③若等差數(shù)列的項(xiàng)數(shù)為,則,且, . 3. 常用公式:①1+2+3 …+n = ② ③[注]:熟悉常用通項(xiàng):9,99,999,…; 5,55,555,….4. 等比數(shù)列的前項(xiàng)和公式的常見應(yīng)用題:⑴生產(chǎn)部門中有增長率的總產(chǎn)量問題. 例如,第一年產(chǎn)量為,年增長率為,則每年的產(chǎn)量成等比數(shù)列,公比為. 其中第年產(chǎn)量為,且過年后總產(chǎn)量為:⑵銀行部門中按復(fù)利計(jì)算問題. 例如:一年中每月初到銀行存元,利息為,每月利息按復(fù)利計(jì)算,則每月的元過個(gè)月后便成為元. 因此,第二年年初可存款:=.⑶分期付款應(yīng)用題:為分期付款方式貸款為a元;m為m個(gè)月將款全部付清;為年利率.5. 數(shù)列常見的幾種形式:⑴(p、q為二階常數(shù))用特證根方法求解.具體步驟:①寫出特征方程(對應(yīng),x對應(yīng)),并設(shè)二根②若可設(shè),若可設(shè);③由初始值確定.⑵(P、r為常數(shù))用①轉(zhuǎn)化等差,等比數(shù)列;②逐項(xiàng)選代;③消去常數(shù)n轉(zhuǎn)化為的形式,再用特征根方法求;④(公式法),由確定.①轉(zhuǎn)化等差,等比:.②選代法:.③用特征方程求解:.④由選代法推導(dǎo)結(jié)果:.6. 幾種常見的數(shù)列的思想方法:⑴等差數(shù)列的前項(xiàng)和為,在時(shí),有最大值. 如何確定使取最大值時(shí)的值,有兩種方法:一是求使,成立的值;二是由利用二次函數(shù)的性質(zhì)求的值.⑵如果數(shù)列可以看作是一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的對應(yīng)項(xiàng)乘積,求此數(shù)列前項(xiàng)和可依照等比數(shù)列前項(xiàng)和的推倒導(dǎo)方法:錯(cuò)位相減求和. 例如:⑶兩個(gè)等差數(shù)列的相同項(xiàng)亦組成一個(gè)新的等差數(shù)列,此等差數(shù)列的首項(xiàng)就是原兩個(gè)數(shù)列的第一個(gè)相同項(xiàng),公差是兩個(gè)數(shù)列公差的最小公倍數(shù).2. 判斷和證明數(shù)列是等差(等比)數(shù)列常有三種方法:(1)定義法:對于n≥2的任意自然數(shù),驗(yàn)證為同一常數(shù)。3. 成等差數(shù)列。2(其中)。f(x)=1為奇函數(shù).⑻.圖象的作法與平移:①據(jù)函數(shù)表達(dá)式,列表、描點(diǎn)、連光滑曲線;②利用熟知函數(shù)的圖象的平移、翻轉(zhuǎn)、伸縮變換;③利用反函數(shù)的圖象與
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1