freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考數(shù)學(xué)知識點總結(jié)精華-文庫吧資料

2025-06-05 22:49本頁面
  

【正文】 在底面上的射影為底面多邊形內(nèi)心.⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.⑥三棱錐的三條側(cè)棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;⑧每個四面體都有內(nèi)切球,球心是四面體各個二面角的平分面的交點,到各面的距離等于半徑.[注]:i. 各個側(cè)面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.()(各個側(cè)面的等腰三角形不知是否全等)ii. 若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直. 簡證:AB⊥CD,AC⊥BD BC⊥AD. 令得,已知則.iii. 空間四邊形OABC且四邊長相等,則順次連結(jié)各邊的中點的四邊形一定是矩形.iv. 若是四邊長與對角線分別相等,則順次連結(jié)各邊的中點的四邊是一定是正方形.簡證:取AC中點,則平面90176。(考生可在9(A)和9(B)中任選其一)會畫正棱錐的直觀圖.?dāng)?shù)學(xué)探索169。(9)了解棱柱的概念,掌握棱柱的性質(zhì),會畫直棱柱的直觀圖.?dāng)?shù)學(xué)探索169。(8)了解多面體、凸多面體的概念。(6)理解直線的方向向量、平面的法向量、向量在平面內(nèi)的射影等概念.?dāng)?shù)學(xué)探索169。(4)了解空間向量的基本定理;.?dāng)?shù)學(xué)探索169。(2)掌握直線和平面平行的判定定理和性質(zhì)定理;;掌握三垂線定理及其逆定理.?dāng)?shù)學(xué)探索169。(1)掌握平面的基本性質(zhì)。.正多面體.棱柱.棱錐.球.?dāng)?shù)學(xué)探索169。.平面的法向量.點到平面的距離.直線和平面所成的角.向量在平面內(nèi)的射影.?dāng)?shù)學(xué)探索169。、減法與數(shù)乘.空間向量的坐標(biāo)表示.空間向量的數(shù)量積.?dāng)?shù)學(xué)探索169。.直線和平面垂直的判定.三垂線定理及其逆定理.?dāng)?shù)學(xué)探索169。.平面圖形直觀圖的畫法.?dāng)?shù)學(xué)探索169。數(shù)學(xué)探索169。(9)了解球的概念,掌握球的性質(zhì),掌握球的表面積、體積公式.?dāng)?shù)學(xué)探索169。(7)了解棱柱的概念,掌握棱柱的性質(zhì),會畫直棱柱的直觀圖.?dāng)?shù)學(xué)探索169。(5)會用反證法證明簡單的問題.?dāng)?shù)學(xué)探索169。(3)掌握直線和平面平行的判定定理和性質(zhì)定理;掌握直線和平面垂直的判定定理和性質(zhì)定理;掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念掌握三垂線定理及其逆定理.?dāng)?shù)學(xué)探索169。能夠畫出空間兩條直線、直線和平面的各種位置關(guān)系的圖形,能夠根據(jù)圖形想像它們的位置關(guān)系.?dāng)?shù)學(xué)探索169。數(shù)學(xué)探索169。.平行平面間的距離.二面角及其平面角.兩個平面垂直的判定與性質(zhì).?dāng)?shù)學(xué)探索169。.對應(yīng)邊分別平行的角.異面直線所成的角.異面直線的公垂線.異面直線的距離.?dāng)?shù)學(xué)探索169。實軸長2a, 虛軸長2b.x軸焦點F1(c,0), F2(─c,0)F1(c,0), F2(─c,0)焦距2c (c=)2c (c=)離心率e=1準(zhǔn)線x=x=漸近線y=177。Rx179。b|x| 179。a,─b163。則焦點半徑為.③通徑為2p,這是過焦點的所有弦中最短的.④(或)的參數(shù)方程為(或)(為參數(shù)).四、圓錐曲線的統(tǒng)一定義..4. 圓錐曲線的統(tǒng)一定義:平面內(nèi)到定點F和定直線的距離之比為常數(shù)的點的軌跡.當(dāng)時,軌跡為橢圓;當(dāng)時,軌跡為拋物線;當(dāng)時,軌跡為雙曲線;當(dāng)時,軌跡為圓(,當(dāng)時).5. 圓錐曲線方程具有對稱性. 例如:橢圓的標(biāo)準(zhǔn)方程對原點的一條直線與雙曲線的交點是關(guān)于原點對稱的.因為具有對稱性,所以欲證AB=CD, 即證AD與BC的中點重合即可.注:橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)橢圓雙曲線拋物線定義1.到兩定點F1,F2的距離之和為定值2a(2a|F1F2|)的點的軌跡1.到兩定點F1,F2的距離之差的絕對值為定值2a(02a|F1F2|)的點的軌跡2.與定點和直線的距離之比為定值e的點的軌跡.(0e1)2.與定點和直線的距離之比為定值e的點的軌跡.(e1)與定點和直線的距離相等的點的軌跡.圖形方程標(biāo)準(zhǔn)方程(0)(a0,b0)y2=2px參數(shù)方程(t為參數(shù))范圍─a163。07. 直線和圓的方程 知識要點一、直線方程.1. 直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為0,故直線傾斜角的范圍是.注:①當(dāng)或時,直線垂直于軸,它的斜率不存在.②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時,其傾斜角也對應(yīng)確定.2. 直線方程的幾種形式:點斜式、截距式、兩點式、斜切式.特別地,當(dāng)直線經(jīng)過兩點,即直線在軸,軸上的截距分別為時,直線方程是:.注:若是一直線的方程,則這條直線的方程是,但若則不是這條線.附:直線系:對于直線的斜截式方程,當(dāng)均為確定的數(shù)值時,它表示一條確定的直線,如果變化時,對應(yīng)的直線也會變化.①當(dāng)為定植,變化時,它們表示過定點(0,)的直線束.②當(dāng)為定值,變化時,它們表示一組平行直線.3. ⑴兩條直線平行:∥兩條直線平行的條件是:①和是兩條不重合的直線. ②在和的斜率都存在的前提下得到的. 因此,應(yīng)特別注意,抽掉或忽視其中任一個“前提”都會導(dǎo)致結(jié)論的錯誤.(一般的結(jié)論是:對于兩條直線,它們在軸上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且)推論:如果兩條直線的傾斜角為則∥. ⑵兩條直線垂直:兩條直線垂直的條件:①設(shè)兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要條件)4. 直線的交角:⑴直線到的角(方向角);直線到的角,是指直線繞交點依逆時針方向旋轉(zhuǎn)到與重合時所轉(zhuǎn)動的角,它的范圍是,當(dāng)時.⑵兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個角中最小的正角,又稱為和所成的角,它的取值范圍是,當(dāng),則有.5. 過兩直線的交點的直線系方程為參數(shù),不包括在內(nèi))6. 點到直線的距離:⑴點到直線的距離公式:設(shè)點,直線到的距離為,則有.注:7. 關(guān)于點對稱和關(guān)于某直線對稱:⑴關(guān)于點對稱的兩條直線一定是平行直線,且這個點到兩直線的距離相等.⑵關(guān)于某直線對稱的兩條直線性質(zhì):若兩條直線平行,則對稱直線也平行,且兩直線到對稱直線距離相等.若兩條直線不平行,則對稱直線必過兩條直線的交點,且對稱直線為兩直線夾角的角平分線.⑶點關(guān)于某一條直線對稱,用中點表示兩對稱點,則中點在對稱直線上(方程①),過兩對稱點的直線方程與對稱直線方程垂直(方程②)①②可解得所求對稱點.注:①曲線、直線關(guān)于一直線()對稱的解法:y換x,x換y. 例:曲線f(x ,y)=0關(guān)于直線y=x–2對稱曲線方程是f(y+2 ,x –2)=0. ②曲線C: f(x ,y)=0關(guān)于點(a ,b)的對稱曲線方程是f(a – x, 2b – y)=0. 二、圓的方程.1. ⑴曲線與方程:在直角坐標(biāo)系中,如果某曲線上的 與一個二元方程的實數(shù)建立了如下關(guān)系:①曲線上的點的坐標(biāo)都是這個方程的解.②以這個方程的解為坐標(biāo)的點都是曲線上的點.那么這個方程叫做曲線方程;這條曲線叫做方程的曲線(圖形).⑵曲線和方程的關(guān)系,實質(zhì)上是曲線上任一點其坐標(biāo)與方程的一種關(guān)系,曲線上任一點是方程的解;反過來,滿足方程的解所對應(yīng)的點是曲線上的點.注:如果曲線C的方程是f(x ,y)=0,那么點P0(x0 ,y)線C上的充要條件是f(x0 ,y0)=0 2. 圓的標(biāo)準(zhǔn)方程:以點為圓心,為半徑的圓的標(biāo)準(zhǔn)方程是.特例:圓心在坐標(biāo)原點,半徑為的圓的方程是:.注:特殊圓的方程:①與軸相切的圓方程 ②與軸相切的圓方程 ③與軸軸都相切的圓方程 3. 圓的一般方程: .當(dāng)時,方程表示一個圓,其中圓心,半徑.當(dāng)時,方程表示一個點.當(dāng)時,方程無圖形(稱虛圓).注:①圓的參數(shù)方程:(為參數(shù)).②方程表示圓的充要條件是:且且.③圓的直徑或方程:已知(用向量可征).4. 點和圓的位置關(guān)系:給定點及圓.①在圓內(nèi)②在圓上③在圓外5. 直線和圓的位置關(guān)系: 設(shè)圓圓:; 直線:; 圓心到直線的距離.①時,與相切;附:若兩圓相切,則相減為公切線方程.②時,與相交;附:公共弦方程:設(shè)有兩個交點,則其公共弦方程為.③時,與相離. 附:若兩圓相離,則相減為圓心的連線的中與線方程. 由代數(shù)特征判斷:方程組用代入法,得關(guān)于(或)的一元二次方程,其判別式為,則:與相切;與相交;與相離.注:若兩圓為同心圓則,相減,不表示直線.6. 圓的切線方程:圓的斜率為的切線方程是過圓上一點的切線方程為:.①一般方程若點(x0 ,y0)在圓上,則(x – a)(x0 – a)+(y – b)(y0 – b)=R2. 特別地,過圓上一點的切線方程為.②若點(x0 ,y0)不在圓上,圓心為(a,b)則,聯(lián)立求出切線方程.7. 求切點弦方程:方法是構(gòu)造圖,則切點弦方程即轉(zhuǎn)化為公共弦方程. 如圖:ABCD四類共圓. 已知的方程…① 又以ABCD為圓為方程為…② …③,所以BC的方程即③代②,①②相切即為所求. 167。(6)掌握圓的標(biāo)準(zhǔn)方程和一般方程,了解參數(shù)方程的概念。(4)了解線性規(guī)劃的意義,并會簡單的應(yīng)用.?dāng)?shù)學(xué)探索169。(2)掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。.由已知條件列出曲線方程.?dāng)?shù)學(xué)探索169。.兩條
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1