freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考]20xx屆高考數(shù)學(xué)知識點(diǎn)總結(jié)精華版-文庫吧資料

2024-11-16 16:50本頁面
  

【正文】 ⑩abbabay ??????? ????? c os)s i n (s i nc os 22 有 yba ?? 22 . 1三角函數(shù)圖象的作法: 1)、幾何法: 2)、描點(diǎn)法及其特例 ——五點(diǎn)作圖法(正、余弦曲線),三點(diǎn)二線作圖法(正、余切曲線) . 3)、利用圖象變換作三角函數(shù)圖象. 三角函數(shù)的圖象變換有振幅變換、周期變換和相位變換等. 函數(shù) y= Asin(ω x+ φ)的 振幅 |A|,周期 2||T ???,頻率 1 | |2f T ????,相位 。 cs c x =1 tan x = xxc o ssin s in 2 x + co s 2 x =1co s x 178。 余弦線: OM?!? < 360176。 : 類似于等差數(shù)列前 n 項(xiàng)和公式的推導(dǎo)方法 . 1) : 1+2+3+...+n = 2 )1( ?nn 2) 1+3+5+...+(2n1) = 2n 3) 2333 )1(2121 ?????? ????? nnn? 4) )12)(1(61321 2222 ??????? nnnn? 【 狀元資料吧 】 [讀經(jīng) 品 資料,上名牌大學(xué) ] 【狀元資料為學(xué)子助力 !】 5) 111)1( 1 ???? nnnn )211(21)2( 1 ???? nnnn 6) )()11(11 qpqppqpq ???? 高中數(shù)學(xué)第四章 三角函數(shù) 考試內(nèi)容: 角的概念的推廣.弧度制. 任意角的三角函數(shù).單位圓中 的三角函數(shù)線.同角三角函數(shù)的基本關(guān)系式 .正弦、余弦的誘導(dǎo)公式. 兩角和與差的正弦、余弦、正切.二倍角的正弦、余弦、正切. 正弦函數(shù)、余弦函數(shù)的圖像和性質(zhì).周期函數(shù).函數(shù) y=Asin(ω x+φ )的圖像.正切函數(shù)的圖像和性質(zhì).已知三角函數(shù)值求角. 正弦定理.余弦定理.斜三角形解法. 167。 :適用于???????1nnaac 其中 { na }是各項(xiàng)不為 0 的等差數(shù)列, c 為常數(shù);部分無理數(shù)列、含階乘的數(shù)列 等。在解含絕對值的數(shù)列最值問題時 ,注意轉(zhuǎn)化思想的應(yīng)用。 (3)中項(xiàng)公式法 :驗(yàn)證 212 ?? ?? nnn aaa Nnaaa nnn ?? ?? )( 22 1 都成立。 【 狀元資料吧 】 [讀經(jīng) 品 資料,上名牌大學(xué) ] 【狀元資料為學(xué)子助力 !】 4 )(1 1 nmnm aan aad nmn ??????? 11 aaq nn ?? , mnmn aaq ?? )( nm? 5 ? 看數(shù)列是不是等差數(shù)列有以下三種方法: ① ),2(1 為常數(shù)dndaa nn ??? ? ② 2 11 ?? ?? nnn aaa ( 2?n ) ③ bknan ?? ( kn, 為常數(shù) ). ? 看數(shù)列是不是等比數(shù)列有以下四種方法: ① )0,2(1 ??? ? 且為常數(shù)qnqaa nn ② 112 ?? ?? nnn aaa ( 2?n , 011 ??? nnn aaa )① ii. acb? ( ac> 0)→為 a、 b、 c 等比數(shù)列的充分不必要 . iii. acb ?? →為 a、 b、 c 等比數(shù)列的必要不充分 . iv. acb ?? 且 0?ac →為 a、 b、 c 等比數(shù)列的充要 . 注意:任意兩數(shù) a、 c 不一定有等比中項(xiàng),除非有 ac> 0,則等比中項(xiàng)一定有兩個 . ③ nn cqa ? ( qc, 為非零常數(shù) ). ④ 正數(shù)列 { na }成等比的充要條件是數(shù)列 { nxalog }( 1?x )成等比數(shù)列 . ? 數(shù)列 { na }的前 n 項(xiàng)和 nS 與通項(xiàng) na 的關(guān)系:??? ?? ???? )2()1(111 nss nasannn [注 ]: ① ? ? ? ?danddnaa n ?????? 11 1 ( d 可為零也可不為零→為等差數(shù)列充要條【 狀元資料吧 】 [讀經(jīng) 品 資料,上名牌大學(xué) ] 【狀元資料為學(xué)子助力 !】 件(即常 數(shù)列也是等差數(shù)列)→若 d 不為 0,則是等差數(shù)列充分條件) . ② 等差 { na }前 n 項(xiàng)和 ndandBnAnSn ?????? ??????????? 22 122 →2d可以為零也可不為零→為等差的充要條件→若 d為零,則是等差數(shù)列的充分條件;若 d不為零,則是等差數(shù)列的充分條件 . ③ 非零 . . 常數(shù)列既可為等比數(shù)列,也可為等差數(shù)列 .(不是非零,即不可能有等比數(shù)列) 2. ①等差數(shù)列依次每 k 項(xiàng)的和仍成等差數(shù)列,其公差為原公差的 k2倍 ..., 232 kkkkk SSSSS ?? ; ②若等差數(shù)列的項(xiàng)數(shù)為 2 ? ???Nnn ,則 ,奇偶 ndSS ??1?? nnaaSS偶奇 ; ③ 若等差數(shù)列的項(xiàng)數(shù)為 ? ???? Nnn 12 ,則 ? ? nn anS 1212 ??? ,且 naSS ?? 偶奇 ,1??nnSS偶奇 得到所求項(xiàng)數(shù)到代入 12 ?? nn . 3. 常用公式:① 1+2+3 ? +n = ? ?21?nn ② ? ?? ?6 121321 2222 ?????? nnnn? ③ ? ? 22 1321 3333 ?????? ???? nnn? [注 ]:熟悉常用通項(xiàng): 9, 99, 999, … 110 ??? nna ; 5, 55, 555, … ? ?11095 ??? nna. 5. 數(shù)列常見的幾種形式: ? nnn qapaa ?? ?? 12 ( p、 q 為二階常數(shù)) ? 用特證根方法求解 . 具體步驟: ① 寫出特征方程 qPxx ??2 ( 2x 對應(yīng) 2?na , x 對應(yīng) 1?na ),并設(shè)二根 21,xx ② 若 21xx? 可設(shè) nnn xcxca 2211. ?? ,若 21xx? 可設(shè) nn xncca 121 )( ?? ; ③ 由初始值 21,aa確定 21,cc . ? rPaa nn ?? ?1 ( P、 r 為常數(shù)) ? 用 ① 轉(zhuǎn)化等差,等比數(shù)列; ② 逐項(xiàng)選代;【 狀元資料吧 】 [讀經(jīng) 品 資料,上名牌大學(xué) ] 【狀元資料為學(xué)子助力 !】 ③ 消去常數(shù) n 轉(zhuǎn)化為 nnn qaPaa ?? ?? 12 的形式,再用特征根方法求 na ;④ 121 ??? nn Pcca (公式法), 21,cc 由 21,aa 確定 . ① 轉(zhuǎn)化等差,等比:1)( 11 ?????????? ?? P rxxPxPaaxaPxa nnnn. ② 選代法: ?????? ?? rrPaPrPaa nnn )( 21 xPxaP rPP raa nnn ????????? ?? 1111 )(1)1(? rrPaP nn ?????? ?? Pr211 ?. ③ 用特征方程求解: ?????? ?? ?? 相減,rPaa rPaa nn nn 11 1?na 111 1 ??? ??????? nnnnnn PaaPaPaPaa )(. ④ 由選代法推導(dǎo)結(jié)果:PrPP racPcaP racPrc nnn ???????????? ?? 1111 11112121 )(,. 6. 幾種常 見的數(shù)列的思想方法: ? 等差數(shù)列的前 n 項(xiàng)和為 nS ,在 0?d 時,有最大值 . 如何確定使 nS 取最大值時的 n 值,有兩種方法: 一是求使 0,0 1 ??? nn aa ,成立的 n 值;二是由 ndandSn )2(2 12 ???利用二次函數(shù)的性質(zhì)求 n 的值 . ? 如果數(shù)列可以看作是一個等差數(shù)列與一個等比數(shù)列的對應(yīng)項(xiàng)乘積,求此數(shù)列前 n 項(xiàng)和可依照等比數(shù)列前 n 項(xiàng)和的推倒導(dǎo)方法:錯位相減求和 . 例如: ,.. .21)12,.. .(413,211 nn ?? ? 兩個等差數(shù)列的相同項(xiàng)亦組成一個新的等差數(shù)列,此等差數(shù)列的首項(xiàng)就是原兩個數(shù)列的第一個相同項(xiàng),公差是兩個數(shù)列公差 21 dd, 的最小公倍數(shù) . 2. 判斷和證明數(shù)列是等差(等比)數(shù)列常有三種方法: (1)定義法 :對【 狀元資料吧 】 [讀經(jīng) 品 資料,上名牌大學(xué) ] 【狀元資料為學(xué)子助力 !】 于 n≥ 2 的任意自然數(shù) ,驗(yàn)證 )(11 ??? nnnn aaaa 為同一常數(shù)。 3 . nnnnn sssss 232 , ?? 成等差數(shù)列。 2 若 }{nk 成 (其中 Nkn? )則 }{nka也為 。 03. 數(shù)數(shù) 列列 知知 識識 要要 點(diǎn)點(diǎn) 等差數(shù)列 等差數(shù)列的定 義 等差數(shù)列的通項(xiàng) 等差數(shù)列的性質(zhì) 等差數(shù)列的前 n項(xiàng)和 等比數(shù)列 等比數(shù)列的定義 等比數(shù)列的通項(xiàng) 等比數(shù)列的性質(zhì) 等比數(shù)列的前 n項(xiàng)和 【 狀元資料吧 】 [讀經(jīng) 品 資料,上名牌大學(xué) ] 【狀元資料為學(xué)子助力 !】 等差數(shù)列 等比數(shù)列 定義 daa nn ???1 )0(1 ??? qqaann 遞推公式 daa nn ?? ?1 ; mdaa nmn ?? ? qaa nn 1?? ; mnmn qaa ?? 通項(xiàng)公式 dnaan )1(1 ??? 11 ?? nn qaa ( 0,1 ?qa ) 中項(xiàng) 2 knkn aaA ?? ??( 0, * ?? knNkn ? ) )0( ?knknknkn aaaaG ??????( 0, * ?? knNkn ? ) 前 n項(xiàng)和 )(2 1 nn aanS ?? dnnnaS n 2 )1(1 ??? ? ?????????????? )2(111)1(111qq qaaqqaqnaS nnn 重要性質(zhì) ) ,(*qpnm Nqpnmaaaa qpnm ??? ????),( * qpnmNqpnmaaaa qpnm ???????【 狀元資料吧 】 [讀經(jīng) 品 資料,上名牌大學(xué) ] 【狀元資料為學(xué)子助力 !】 1. ?等差、等比數(shù)列: 等差數(shù)列 等比數(shù)列 定義 常數(shù))為 (}{ 1 daaPAa nnn ???? ? 常數(shù))為 (}{ 1 qaaPGa nnn ??? ? 通項(xiàng)公式 na = 1a +( n1) d=ka +( nk)d=dn + 1a d knknn qaqaa ?? ?? 11 求和公式 ndanddnnnaaans nn)2(22)1(2)(1211???????? ????????????? )1(11)1()1(111qq qaaqqaqnas nnn 中項(xiàng)公式 A= 2ba? 推廣:2 na = mnmn aa ?? ? abG ?2 。x0時, y1. ( 5)在 R 上是增函數(shù) ( 5)在 R 上是減函數(shù) 對數(shù)運(yùn)算: 【 狀元資料吧 】 [讀經(jīng) 品 資料,上名牌大學(xué) ] 【狀元資料為學(xué)子助力 !】 ? ?nanaaacbab
點(diǎn)擊復(fù)制文檔內(nèi)容
研究報(bào)告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1