【摘要】1高考數(shù)學(xué)備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿(mǎn)思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類(lèi)競(jìng)賽試題命題的極好素材。這類(lèi)問(wèn)題的求解策略往往是:通過(guò)多角度觀察所給數(shù)列通項(xiàng)的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進(jìn)行恰當(dāng)?shù)胤趴s;其放縮技巧主要有以下幾種:一、裂項(xiàng)放縮
2024-11-16 14:02
【摘要】2011高考數(shù)學(xué)備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿(mǎn)思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類(lèi)競(jìng)賽試題命題的極好素材。這類(lèi)問(wèn)題的求解策略往往是:通過(guò)多角度觀察所給數(shù)列通項(xiàng)的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進(jìn)行恰當(dāng)?shù)胤趴s;其放縮技巧主要有以下幾種:一、裂項(xiàng)放縮例1.(
2025-06-22 12:41
【摘要】高考數(shù)學(xué)備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿(mǎn)思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類(lèi)競(jìng)賽試題命題的極好素材。這類(lèi)問(wèn)題的求解策略往往是:通過(guò)多角度觀察所給數(shù)列通項(xiàng)的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進(jìn)行恰當(dāng)?shù)胤趴s;其放縮技巧主要有以下幾種:一、裂項(xiàng)放縮例1.(1)
2025-07-30 08:49
【摘要】20xx高考數(shù)學(xué)所有放縮技巧及不等式證明方法(構(gòu)造法)總的來(lái)說(shuō),高考中與不等式有關(guān)的大題(主要是證明題)一般常用均值不等式、構(gòu)造函數(shù)后用導(dǎo)數(shù)工具解、裂項(xiàng)相消等常見(jiàn)放縮法來(lái)解決。證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿(mǎn)思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類(lèi)競(jìng)賽試題命題的極好素
2025-08-07 09:18
【摘要】2010高考數(shù)學(xué)備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿(mǎn)思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類(lèi)競(jìng)賽試題命題的極好素材。這類(lèi)問(wèn)題的求解策略往往是:通過(guò)多角度觀察所給數(shù)列通項(xiàng)的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進(jìn)行恰當(dāng)?shù)胤趴s;其放縮技巧主要有以下幾種:一、裂項(xiàng)放縮例1.(
2025-04-22 23:49
2024-08-23 21:59
【摘要】2020高考數(shù)學(xué)備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿(mǎn)思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類(lèi)競(jìng)賽試題命題的極好素材。這類(lèi)問(wèn)題的求解策略往往是:通過(guò)多角度觀察所給數(shù)列通項(xiàng)的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律進(jìn)行恰當(dāng)?shù)胤趴s;其放縮技巧主要有以下幾種:一、裂
2024-11-17 21:22
【摘要】更多關(guān)注@高中學(xué)習(xí)資料庫(kù)求資料加微信:gzxxzlk2020高考數(shù)學(xué)備考之放縮技巧證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿(mǎn)思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考?jí)狠S題及各級(jí)各類(lèi)競(jìng)賽試題命題的極好素材。這類(lèi)問(wèn)題的求解策略往往是:通過(guò)多角度觀察所給數(shù)列通項(xiàng)的結(jié)構(gòu),深入剖析其特征,抓住其規(guī)律
2024-11-24 09:08
【摘要】高考數(shù)學(xué)“放縮法”全解析例如:1、添加或舍棄一些正項(xiàng)(或負(fù)項(xiàng)) 例1、已知求證:證明: 若多項(xiàng)式中加上一些正的值,多項(xiàng)式的值變大,多項(xiàng)式中加上一些負(fù)的值,多項(xiàng)式的值變小。由于證明不等式的需要,有時(shí)需要舍去或添加一些項(xiàng),使不等式一邊放大或縮小,利用不等式的傳遞性,達(dá)到證明的目的。本題在放縮時(shí)就舍去了,從而是使和式得到化簡(jiǎn).2、先放縮再求和(或先求和再
2025-04-23 13:10
【摘要】1.均值不等式法例1設(shè)求證例2已知函數(shù),若,且在[0,1]上的最小值為,求證:例3求證.例4已知,,求證:≤1.2.利用有用結(jié)論例5求證例6已知函數(shù)求證:對(duì)任意且恒成立。例7已知用數(shù)學(xué)歸納法證明;對(duì)對(duì)都成立,證明(無(wú)理數(shù))例8已知不等式。表示不超過(guò)的最大整數(shù)。設(shè)正數(shù)數(shù)列滿(mǎn)足:求證再如:設(shè)函數(shù)。(Ⅰ)
2024-08-24 11:16
【摘要】第一篇:2012高考專(zhuān)題----數(shù)列與不等式放縮法 高考專(zhuān)題——放縮法 一、基本方法 1.“添舍”放縮 通過(guò)對(duì)不等式的一邊進(jìn)行添項(xiàng)或減項(xiàng)以達(dá)到解題目的,這是常規(guī)思路。,b為不相等的兩正數(shù),且a...
2024-10-28 23:29
【摘要】2017高考?jí)狠S題精選黃岡中學(xué)高考數(shù)學(xué)壓軸100題目錄 22復(fù)合函數(shù) 4 6 12——不等式 13 207.函數(shù)與數(shù)列綜合 22 339.Sn與an的關(guān)系 38 41—不等式 4312.?dāng)?shù)列與解析幾何 4713.橢圓 49 52 5616解析幾何中的參數(shù)范圍問(wèn)題 5817解析幾何中的最值問(wèn)題 64
2025-04-22 12:04
【摘要】2009年高考全國(guó)百所名校數(shù)學(xué)壓軸題精選AAA.【青島市2009年高三教學(xué)統(tǒng)一質(zhì)量檢測(cè)(理)22.】(本小題滿(mǎn)分14分)已知等比數(shù)列的前項(xiàng)和為(Ⅰ)求數(shù)列的通項(xiàng)公式;?。á颍┰O(shè)數(shù)列滿(mǎn)足,為數(shù)列的前項(xiàng)和,試比較與的大小,并證明你的結(jié)論. 【解析】:(Ⅰ)由得:時(shí), ………………………2分是等比數(shù)列,,得……4分 ?。á颍┯珊偷谩?/span>
2024-08-21 16:38
【摘要】2020年高考全國(guó)百所名校數(shù)學(xué)壓軸題精選AAA.【青島市2020年高三教學(xué)統(tǒng)一質(zhì)量檢測(cè)(理)22.】(本小題滿(mǎn)分14分)已知等比數(shù)列??na的前n項(xiàng)和為23(R,N)nnSkkn??????(Ⅰ)求數(shù)列??na的通項(xiàng)公式;(Ⅱ)設(shè)數(shù)列??nb滿(mǎn)足4(5)nnabnak??,
2024-11-11 07:20
【摘要】四川高考數(shù)學(xué)壓軸題方法技巧歸納總結(jié)付彬編著QQ:522597089[草稿]前言本文解法皆為原創(chuàng),分析并歸納總結(jié)了若干高考難題的獨(dú)到解決方法,值得廣大教師及學(xué)生研讀。題目大多取自高中數(shù)學(xué)吧,其來(lái)源于不同
2024-10-31 20:07