【摘要】第2章線性代數(shù)方程組第2章線性代數(shù)方程組11112211211222221122()nnnnnnnnnnxxxxxxxxx???????????????????????????????線性代數(shù)方程組
2024-10-06 16:20
【摘要】數(shù)值分析數(shù)值分析第三節(jié)用矩陣分解法求解線性方程組ALUAxb??一、利用三角分解求解PALUAxb??二、用列主元的三角分解求解TPAQLUAxb??三、用全主元的三角分解求解TCholeskyALLAxb??四、利用分解求解AQRAxb??五、利用正交分解求解TAUV
2024-10-24 23:59
【摘要】浙江大學(xué)研究生學(xué)位課程《實(shí)用數(shù)值計(jì)算方法》1第三章線性代數(shù)方程組問(wèn)題概述直接法迭代法稀疏矩陣其他特殊形式的矩陣浙江大學(xué)研究生學(xué)位課程《實(shí)用數(shù)值計(jì)算方法》2問(wèn)題概述問(wèn)題提出
2024-08-14 12:51
【摘要】實(shí)驗(yàn)一病態(tài)線性代數(shù)方程組的求解輸入m=10可以得到如下表的結(jié)果階數(shù)12345條件數(shù)1+4+5階數(shù)678910條件數(shù)+7+8+10+11+13,分別用Guass消去(LU分解),Jacobi迭代,GS迭代,SOR迭代求解,比較結(jié)果。說(shuō)明:Hx=b,H矩陣可以由matl
2024-09-03 12:04
【摘要】第三章線性代數(shù)方程組的數(shù)值解法引言解線性方程組的消去法解線性方程組的矩陣分解法解線性方程組的迭代法引言給定一個(gè)線性方程組)13(bAx??????????????????????
2025-05-17 02:00
【摘要】第六章線性方程組的直接解法問(wèn)題驅(qū)動(dòng):投入產(chǎn)出分析投入產(chǎn)出分析是20世紀(jì)30年代由美國(guó)經(jīng)濟(jì)學(xué)家首先提出的,它是研究整個(gè)經(jīng)濟(jì)系統(tǒng)各部門(mén)之間“投入”與“產(chǎn)出”關(guān)系的線性模型,一般稱(chēng)為投入產(chǎn)出模型。國(guó)民經(jīng)濟(jì)各個(gè)部門(mén)之間存在著相互依存的關(guān)系,每個(gè)部門(mén)在運(yùn)轉(zhuǎn)中將其它部門(mén)的成品或半成品經(jīng)過(guò)加工(稱(chēng)為投入)變?yōu)?/span>
2025-05-17 01:39
【摘要】第五章線性方程組的迭代解法消去法方程組系數(shù)矩陣的分類(lèi)?低階稠密矩陣(例如,階數(shù)不超過(guò)150)(一般用直接法來(lái)求解)?大型稀疏矩陣(即矩陣階數(shù)高且零元素較多)(一般用迭代法來(lái)求解)線性方程組的數(shù)值解法分類(lèi)?直接法經(jīng)過(guò)有限步算術(shù)運(yùn)算,可求得方程組精確解的方法。
2024-08-05 10:31
【摘要】幾何與代數(shù)主講:王小六線性代數(shù)的相關(guān)資料:1《IntroductiontoLinearAlgebra》,GilbertStrang著,麻省理工開(kāi)放課程鏈接:2《Linearalgebraanditsapplications》/線性代數(shù)及其應(yīng)用/[美]DavidC.Lay著3
2025-05-06 05:22
【摘要】§非線性方程組的迭代解法§預(yù)備知識(shí)一、一般非線性方程組及其向量表示法11221212(,,,)0(,,,)0()(,,,)0nnnnfxxxfxxxfxxx????????
2024-08-06 07:09
【摘要】第六章線性方程組的迭代解法§1向量和矩陣的范數(shù)向量的范數(shù)矩陣的范數(shù)§2迭代解法與收斂性迭代解法的構(gòu)造迭代解法的收斂性條件§3常用的三種迭代解法Jacobi迭代法Gauss-Seide
2024-08-03 00:10
【摘要】線代框架之線性方程組:線性方程組的矩陣式Ax??,其中1112111212222212,,nnmmmnnmaaaxbaaaxbAxaaaxb??????????????????????????????????
2025-01-12 22:11
【摘要】線代框架之線性方程組:線性方程組的矩陣式,其中向量式,其中,有非零解推論1:當(dāng)mn(即方程的個(gè)數(shù)未知數(shù)的個(gè)數(shù))時(shí),齊次線性方程組必有非零解。推論2:當(dāng)m=n,齊次線性方程組有非零解的充要條件是注:(其中n為未知數(shù)的個(gè)數(shù))一個(gè)齊次線性方程組的基礎(chǔ)解系不唯一:注:(導(dǎo)出組有非零解=有解)非齊次有解
2024-09-05 13:54
【摘要】線性方程組的解法解線性方程組的迭代法IterativeMethodsforLinearSystemsJacobi迭代和Gauss-Seidel迭代迭代法的矩陣表示MatrixformoftheIterativeMethods線性方程組的解法在計(jì)算數(shù)學(xué)中占有極其重要的地位。線性方程組的解法大致分為迭代法與直接法
2024-08-20 11:23
【摘要】用Matlab學(xué)習(xí)線性代數(shù)線性方程組與矩陣代數(shù)實(shí)驗(yàn)?zāi)康模菏煜ぞ€性方程組的解法和矩陣的基本運(yùn)算及性質(zhì)驗(yàn)證。Matlab命令:本練習(xí)中用到的Matlab命令有:inv,floor,rand,tic,toc,rref,abs,max,round,sum,eye,triu,ones,zeros。本練習(xí)引入的運(yùn)算有:+,-,*,’,,\。其中+和-表示通常標(biāo)量及矩陣的加法和減法運(yùn)算
2024-08-30 02:09
【摘要】第五節(jié)齊次線性方程組一.齊次線性方程組()有非零解的充要條件二.齊次線性方程組解的性質(zhì)三.基礎(chǔ)解系四.解的結(jié)構(gòu)五.練習(xí)題,][Ansija??系數(shù)矩陣02211????nnxxx????1.齊次線性方程組()有非零解的充要條件或向量形式???????????
2024-08-18 10:50