【摘要】第五章函數(shù)近似計(jì)算的插值法Hermite插值法§Hermite插值法§Lagrange插值雖然構(gòu)造比較簡(jiǎn)單,但插值曲線只是在節(jié)點(diǎn)處與原函數(shù)較吻合,若還要求在節(jié)點(diǎn)處兩者相切,即倒數(shù)值相等,使之與被插函數(shù)的”密切”程度更好,這就要用到帶導(dǎo)數(shù)的插值.0101(),,,,,
2024-08-18 20:29
【摘要】第五章函數(shù)近似計(jì)算的插值法Newton插值法§均差(也稱為差商)是數(shù)值方法中的一個(gè)重要概念,它可以反映出列表函數(shù)的性質(zhì),并能對(duì)Lagrange插值公式給出新的表達(dá)形式,這就是Newton插值。一、均差二、Newton插值公式三、等距節(jié)點(diǎn)的Newton插值公式四、Newton插值
【摘要】1MATLAB插值與擬合§1曲線擬合實(shí)例:溫度曲線問(wèn)題氣象部門觀測(cè)到一天某些時(shí)刻的溫度變化數(shù)據(jù)為:t012345678910T1315171416192624262729試描繪出溫度變化曲線。曲線擬合就是計(jì)算出兩組數(shù)據(jù)之間的一種函數(shù)關(guān)系,由此可描繪其變化曲線及估計(jì)非采集
2024-08-29 07:08
【摘要】1第2章插值法2引言Lagrange插值均差與Newton插值多項(xiàng)式Hermite插值分段低次插值三次樣條插值3引言設(shè)函數(shù)在區(qū)間上有定義,且已知在點(diǎn))(xfy?],[ba上的值
2025-01-25 10:08
【摘要】數(shù)值分析第二章插值法均差與牛頓插值公式Lagrange插值多項(xiàng)式的缺點(diǎn))(xlj??????njiiijixxxx0)()(nj,,2,1,0??我們知道,Lagrange插值多項(xiàng)式的插值基函數(shù)為理論分析中很方便,但是當(dāng)插值節(jié)點(diǎn)增減時(shí)全部插值基函數(shù)就要隨之變化,整個(gè)公式也
2025-01-21 02:30
【摘要】?引言?拉格朗日插值?差商與牛頓插值?差分與等距節(jié)點(diǎn)插值*?埃爾米特插值?分段低次插值?樣條插值第5章插值法§1引言一、問(wèn)題背景?)(xfy?),,1,0()(nixfyii???),,1,0()()()(ni
2025-01-18 08:03
【摘要】第二章插值與擬合第二章函數(shù)的插值學(xué)習(xí)目標(biāo):掌握多項(xiàng)式插值的Lagrange插值公式、牛頓插值公式等,等距節(jié)點(diǎn)插值、差分、差商、重節(jié)點(diǎn)差商與埃米特插值。重點(diǎn)是多項(xiàng)式插值方法。第二章插值與擬合Hermite插值多項(xiàng)式均差和Newton插值多項(xiàng)式逐次線性插值Lagr
2025-05-22 09:49
【摘要】2022/3/131高等應(yīng)用數(shù)學(xué)問(wèn)題的MATLAB求解東北大學(xué)信息學(xué)院第8章數(shù)據(jù)插值、函數(shù)逼近問(wèn)題的計(jì)算機(jī)求解?薛定宇、陳陽(yáng)泉著《高等應(yīng)用數(shù)學(xué)問(wèn)題的MATLAB求解》,清華大學(xué)出版社2022?CAI課件開(kāi)發(fā):劉瑩瑩、薛定宇2022/3/132高等應(yīng)用數(shù)學(xué)問(wèn)題的MATLAB求解東北大學(xué)
2025-02-27 12:48
【摘要】iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?ni,,3,2??Newton插值法§
2025-05-22 09:20
【摘要】插值、擬合與MATLAB編程相關(guān)知識(shí)在生產(chǎn)和科學(xué)實(shí)驗(yàn)中,自變量與因變量間的函數(shù)關(guān)系有時(shí)不能寫(xiě)出解析表達(dá)式,而只能得到函數(shù)在若干點(diǎn)的函數(shù)值或?qū)?shù)值,或者表達(dá)式過(guò)于復(fù)雜而需要較大的計(jì)算量。當(dāng)要求知道其它點(diǎn)的函數(shù)值時(shí),需要估計(jì)函數(shù)值在該點(diǎn)的值。為了完成這樣的任務(wù),需要構(gòu)造一個(gè)比較簡(jiǎn)單的函數(shù),使函數(shù)在觀測(cè)點(diǎn)的值等于已知的值,或使函數(shù)在該點(diǎn)的導(dǎo)數(shù)值等于已知的值,尋找這樣的函數(shù)有很多方法。根據(jù)測(cè)
2025-06-29 15:18
【摘要】上頁(yè)下頁(yè)在工程技術(shù)與科學(xué)研究中,常會(huì)遇到函數(shù)表達(dá)式過(guò)于復(fù)雜而不便于計(jì)算,且又需要計(jì)算眾多點(diǎn)處的函數(shù)值;或已知由實(shí)驗(yàn)(測(cè)量)得到的某一函數(shù)y=f(x)在區(qū)間[a,b]中互異的n+1個(gè)xi(i=0,1,...,n)處的值yi=f(xi)(i=0,1,...,n),需要構(gòu)造一個(gè)簡(jiǎn)單易算的函數(shù)P(x)作為y=f(x)的近似表
2025-05-05 02:53
2025-05-07 12:05
【摘要】1iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?第三章插值法和最小二乘法插值法
2025-05-21 09:59
【摘要】理學(xué)院AnhuiUniversityofScienceandTechnologyDEPARTMENTOFMATHEMATICSPHYSICS2.?#?數(shù)值分析第二章插值法李慶揚(yáng)王能超易大義編§8三次樣條插值§2Lagrange插值§1引言
2024-12-14 09:42
【摘要】1計(jì)算方法電子教案中南大學(xué)數(shù)學(xué)科學(xué)學(xué)院應(yīng)用數(shù)學(xué)與應(yīng)用軟件系2第二章插值法§1引言§2拉格朗日插值多項(xiàng)式§3牛頓插值多項(xiàng)式§4分段低次插值§5三次樣條插值§6數(shù)值微分3§1
2025-01-25 13:58