【總結(jié)】2021/6/161第二章插值法均差與牛頓插值公式§2021/6/162均差及其性質(zhì)§)(xlj??????njiiijixxxx0)()(nj,,2,1,0??我們知道,拉格朗日插值多項(xiàng)式的插值基函數(shù)為形式上太復(fù)雜,計(jì)算量很大,并且重復(fù)計(jì)
2025-05-13 04:10
【總結(jié)】無(wú)關(guān)只與節(jié)點(diǎn)有關(guān),與iniiiiiniiiyxxxxxxxxxxxxxxxxxl)())(()()())(()()(110110?????????????????????????????6102110933636
2025-02-21 12:45
【總結(jié)】北京科技大學(xué)數(shù)理學(xué)院衛(wèi)宏儒計(jì)算方法第7章插值法插值法是函數(shù)逼近的重要方法之一,有著廣泛的應(yīng)用。在生產(chǎn)和實(shí)驗(yàn)中,函數(shù)f(x)或者其表達(dá)式不便于計(jì)算復(fù)雜或者無(wú)表達(dá)式而只有函數(shù)在給定點(diǎn)的函數(shù)值(或其導(dǎo)數(shù)值),此時(shí)我們希望建立一個(gè)簡(jiǎn)單的而便于計(jì)算的函數(shù)?(x),或?yàn)楦鞣N離散數(shù)據(jù)建立連續(xù)模型
2024-08-04 20:27
【總結(jié)】簡(jiǎn)明數(shù)值計(jì)算方法漳州師范學(xué)院計(jì)算機(jī)科學(xué)與工程系第二講插值法與曲線擬合主要內(nèi)容?插值法?拉格朗日插值?差商與差分?牛頓插值公式?逐次線性插值法?三次樣條插值?曲線擬合?曲線擬合的最小二乘法插值法?在實(shí)際問(wèn)題中,我們會(huì)遇到兩種情況?變量間存在函數(shù)關(guān)系
2025-04-29 07:50
【總結(jié)】數(shù)值分析第二章插值法Hermite插值,,,,,,,)(1010nnyyybxxxaxf??處的函數(shù)值為在節(jié)點(diǎn)設(shè)??值函數(shù)上的具有一階導(dǎo)數(shù)的插的在區(qū)間為設(shè)],[)()(baxfxP處必須滿足在節(jié)點(diǎn)顯然nxxxxP,,,)(10?)(],[)()1(一階光滑度上具有一階導(dǎo)數(shù)在若要求baxPiiiyxfxP??)()
2024-08-14 15:40
【總結(jié)】插值法Newton插值32插值法插值法插值法的一般理論Lagrange插值31分段低次插值34實(shí)際問(wèn)題期望試驗(yàn)數(shù)據(jù)觀測(cè)數(shù)據(jù)期望內(nèi)在規(guī)律期望函數(shù)關(guān)系一、數(shù)學(xué)的期望插值法概述實(shí)驗(yàn)數(shù)據(jù)是否存在內(nèi)在規(guī)律?實(shí)驗(yàn)數(shù)
2025-01-15 12:35
【總結(jié)】數(shù)值分析實(shí)驗(yàn)報(bào)告 《數(shù)值分析》實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)序號(hào):實(shí)驗(yàn)五實(shí)驗(yàn)名稱:分段線性插值法1、實(shí)驗(yàn)?zāi)康模弘S著插值節(jié)點(diǎn)的增加,插值多項(xiàng)式的插值多項(xiàng)式的次數(shù)也增加,而對(duì)于高次的插值容易帶來(lái)劇烈的震蕩,帶來(lái)數(shù)值的不穩(wěn)定(Runge現(xiàn)
2025-06-26 08:10
【總結(jié)】1分段插值法§從上節(jié)可知,如果插值多項(xiàng)式的次數(shù)過(guò)高,可能產(chǎn)生Runge現(xiàn)象,因此,在構(gòu)造插值多項(xiàng)式時(shí)常采用分段插值的方法。一、分段線性Lagrange插值,ix設(shè)插值節(jié)點(diǎn)為niyi,,1,0,??函數(shù)值為],[,,11??kkkkxxxx形成一個(gè)插值區(qū)間任取兩個(gè)相鄰的節(jié)點(diǎn)構(gòu)造Lagrange線性插值
【總結(jié)】朱立永北京航空航天大學(xué)數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院Email:Password:buaa2022答疑時(shí)間:星期一下午15:00-17:00答疑地點(diǎn):雙周:西配樓519室,單周:主南307第十五講Hermite插值第五章插值與逼近不少實(shí)際問(wèn)題不但要求在節(jié)點(diǎn)上函數(shù)值相等,而
2024-08-03 18:53
【總結(jié)】第五章插值法在實(shí)際科學(xué)計(jì)算中常會(huì)出現(xiàn)這樣的情況,由于函數(shù)的解析表達(dá)式過(guò)于復(fù)雜不便計(jì)算,但是需要計(jì)算多個(gè)點(diǎn)處的函數(shù)值;或者函數(shù)的解析表達(dá)式未知,僅知道它在區(qū)間內(nèi)n+1個(gè)互異點(diǎn)處對(duì)應(yīng)的函數(shù)值,需要構(gòu)造一個(gè)簡(jiǎn)單函數(shù)作為函數(shù)
2025-05-13 04:09
【總結(jié)】MATLAB中的插值函數(shù)命令1:interp1功能:一維數(shù)據(jù)插值(表格查找)。該命令對(duì)數(shù)據(jù)點(diǎn)之間計(jì)算內(nèi)插值。它找出一元函數(shù)f(x)在中間點(diǎn)的數(shù)值。其中函數(shù)f(x)由所給數(shù)據(jù)決定。x:原始數(shù)據(jù)點(diǎn)Y:原始數(shù)據(jù)點(diǎn)xi:插值點(diǎn)Yi:插值點(diǎn)格式(1)yi=interp1(x,Y,xi)返回插值向量yi,每一元素對(duì)應(yīng)于參量xi,同時(shí)由向量x與Y的內(nèi)插值決定。參量
2024-08-14 00:41
【總結(jié)】§引言問(wèn)題的提出–函數(shù)解析式未知,通過(guò)實(shí)驗(yàn)觀測(cè)得到的一組數(shù)據(jù),即在某個(gè)區(qū)間[a,b]上給出一系列點(diǎn)的函數(shù)值yi=f(xi)–或者給出函數(shù)表y=f(x)y=p(x)xx0x1x2……xnyy0y1y2……yn第六章插值法插值法的基本原理設(shè)函數(shù)y=f(x)定義在區(qū)
2025-04-29 08:22
【總結(jié)】Show?InverseDistanceWeightedInterpolationOneofthemostmonlyusedtechniquesforinterpolationofscatterpointsisinversedistanceweighted(IDW)interpolation.Inversedistancewei
2024-09-01 12:08
【總結(jié)】第2章插值法在科學(xué)研究與工程技術(shù)中,常常遇到這樣的問(wèn)題:由實(shí)驗(yàn)或測(cè)量得到一批離散樣點(diǎn),要求作出一條通過(guò)這些點(diǎn)的光滑曲線,以便滿足設(shè)計(jì)要求或進(jìn)行加工。反映在數(shù)學(xué)上,即已知函數(shù)在一些點(diǎn)上的值,尋求它的分析表達(dá)式。此外,一些函數(shù)雖有表達(dá)式,但因式子復(fù)雜,不易計(jì)算其值和進(jìn)行理論分析,也需要構(gòu)造一個(gè)簡(jiǎn)單函數(shù)來(lái)近似它。解決這種問(wèn)題的方法有兩類:一類是給出函數(shù)的一些樣點(diǎn),選定一個(gè)便于計(jì)算的函數(shù)形
2024-09-01 01:58
【總結(jié)】牛頓插值法的分析與應(yīng)用學(xué)生姓名:班級(jí):學(xué)號(hào):
2025-06-27 07:09