【摘要】數(shù)值分析第二章插值法均差與牛頓插值公式Lagrange插值多項(xiàng)式的缺點(diǎn))(xlj??????njiiijixxxx0)()(nj,,2,1,0??我們知道,Lagrange插值多項(xiàng)式的插值基函數(shù)為理論分析中很方便,但是當(dāng)插值節(jié)點(diǎn)增減時(shí)全部插值基函數(shù)就要隨之變化,整個(gè)公式也
2025-01-21 02:30
【摘要】拉格朗日插值法問題的提出????01(),,,,,(),(0,1,,)()niyfxababxxxyfxinfx???在實(shí)際問題中常遇到這樣的函數(shù),其在某個(gè)區(qū)間上是存在的。但是,通過觀察或測量或?qū)嶒?yàn)只能得到在區(qū)間上有限個(gè)離散點(diǎn)上
2025-05-17 02:07
【摘要】iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?ni,,3,2??Newton插值法§
2025-05-07 12:05
【摘要】第2章插值法在科學(xué)研究與工程技術(shù)中,常常遇到這樣的問題:由實(shí)驗(yàn)或測量得到一批離散樣點(diǎn),要求作出一條通過這些點(diǎn)的光滑曲線,以便滿足設(shè)計(jì)要求或進(jìn)行加工。反映在數(shù)學(xué)上,即已知函數(shù)在一些點(diǎn)上的值,尋求它的分析表達(dá)式。此外,一些函數(shù)雖有表達(dá)式,但因式子復(fù)雜,不易計(jì)算其值和進(jìn)行理論分析,也需要構(gòu)造一個(gè)簡單函數(shù)來近似它。解決這種問題的方法有兩類:一類是給出函數(shù)的一些樣點(diǎn),選定一個(gè)便于計(jì)算的函數(shù)形
2024-09-05 01:58
【摘要】§引言問題的提出–函數(shù)解析式未知,通過實(shí)驗(yàn)觀測得到的一組數(shù)據(jù),即在某個(gè)區(qū)間[a,b]上給出一系列點(diǎn)的函數(shù)值yi=f(xi)–或者給出函數(shù)表y=f(x)y=p(x)xx0x1x2……xnyy0y1y2……yn第六章插值法插值法的基本原理設(shè)函數(shù)y=f(x)定義在區(qū)
2025-05-05 08:22
【摘要】牛頓插值法的分析與應(yīng)用學(xué)生姓名:班級:學(xué)號:
2025-07-03 07:09
【摘要】數(shù)值分析代數(shù)插值法的論述姓名:藺孝寶學(xué)號:12023316班級:1203學(xué)院:商洛學(xué)院數(shù)計(jì)學(xué)院數(shù)學(xué)與計(jì)算科學(xué)系日期商洛學(xué)院-1-代數(shù)插值法1.摘要插值法是函數(shù)逼近的重要方法之一,有著廣泛的應(yīng)用。在生產(chǎn)和實(shí)驗(yàn)中,函數(shù)f(x
2025-06-14 00:46
【摘要】05:202021/6/171/37§3插值法與曲線擬合實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)處理插值法(Lagrange插值法)曲線擬合(最小二乘法)平行試驗(yàn)數(shù)據(jù)處理,誤差分析。根據(jù)實(shí)驗(yàn)測定的離散數(shù)據(jù),求未測的某點(diǎn)數(shù)據(jù)。根據(jù)實(shí)驗(yàn)測定的離散數(shù)據(jù),擬合曲線,分析數(shù)據(jù)規(guī)律,求函數(shù)表達(dá)式。
2025-05-23 03:12
【摘要】2021/6/161第二章插值法均差與牛頓插值公式§2021/6/162均差及其性質(zhì)§)(xlj??????njiiijixxxx0)()(nj,,2,1,0??我們知道,拉格朗日插值多項(xiàng)式的插值基函數(shù)為形式上太復(fù)雜,計(jì)算量很大,并且重復(fù)計(jì)
2025-05-21 04:10
【摘要】iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?ni,,3,2??第3章插值法iiij
2025-05-21 09:59
【摘要】數(shù)值計(jì)算方法課程設(shè)計(jì)報(bào)告課程設(shè)計(jì)名稱:數(shù)值計(jì)算方法課程設(shè)計(jì)題目:插值算法年級專業(yè):信計(jì)1302班組員姓名學(xué)號:高育坤1309064043王冬妮1309064044
2024-08-18 06:42
【摘要】第五章函數(shù)近似計(jì)算的插值法Hermite插值法§Hermite插值法§Lagrange插值雖然構(gòu)造比較簡單,但插值曲線只是在節(jié)點(diǎn)處與原函數(shù)較吻合,若還要求在節(jié)點(diǎn)處兩者相切,即倒數(shù)值相等,使之與被插函數(shù)的”密切”程度更好,這就要用到帶導(dǎo)數(shù)的插值.0101(),,,,,
2024-08-18 20:29
【摘要】第五章函數(shù)近似計(jì)算的插值法Newton插值法§均差(也稱為差商)是數(shù)值方法中的一個(gè)重要概念,它可以反映出列表函數(shù)的性質(zhì),并能對Lagrange插值公式給出新的表達(dá)形式,這就是Newton插值。一、均差二、Newton插值公式三、等距節(jié)點(diǎn)的Newton插值公式四、Newton插值
【摘要】第3章非線性方程的數(shù)值解法?方程求根與二分法?迭代法及其收斂性?迭代收斂的加速方法?牛頓法?弦截法與拋物線法迭代收斂的加速方法埃特金加速收斂方法對于收斂的迭代過程,只要迭代足夠多次,就可以使結(jié)果達(dá)到任意的精度,但是有時(shí)迭代過程收斂較慢,從而使計(jì)算量變得很大.
【摘要】?引言?拉格朗日插值?差商與牛頓插值?差分與等距節(jié)點(diǎn)插值*?埃爾米特插值?分段低次插值?樣條插值第5章插值法§1引言一、問題背景?)(xfy?),,1,0()(nixfyii???),,1,0()()()(ni
2025-01-18 08:03