【摘要】余弦定理課件:在任一個三角形中,各邊和它所對角的正弦比相等,即===2R(R為△ABC外接圓半徑)AasinBbsinCcsin:從理論上正弦定理可解決兩類問題:1.兩角和任意一邊,求其它兩邊和一角;2.兩邊和其中一邊對角,求另一邊的
2024-11-22 12:09
【摘要】2020年12月24日星期四首頁§余弦定理2020年12月24日星期四引入2sinsinsin(abcRABCRABC????為外 接圓的半徑)在一個三角形中,各邊的長和它所對角的正弦的比相等。即:ABCac
2024-11-21 17:33
【摘要】余弦定理A組基礎鞏固1.邊長為5,7,8的三角形的最大角與最小角之和為()A.90°B.120°C.135°D.150°解析:設長為7的邊所對的角為θ,由已知條件可知角θ為中間角.∵cosθ=52+82-7223538=
2024-12-13 03:49
【摘要】素材1、角的關系2、邊的關系3、邊角關系?180???CBAcbacba????,大角對大邊大邊對大角CabbacBaccabAbccbacos2cos2cos2222222222?????????復習?例1。在△ABC中,a,b,c
2024-11-21 19:51
【摘要】本資料由書利華教育網(又名數理化網)為您整理1本資料由書利華教育網(又名數理化網)為您整理2與x軸的交點)0,0()0,(?)0,2(?圖象的最低點)1,(23??圖象的最高點)1,2(?(五點作圖法)(1)列表(3)連線(2)
2024-11-21 16:27
【摘要】余弦定理(1)【學習目標】1.掌握余弦定理的兩種表示形式;2.證明余弦定理的向量方法;3.運用余弦定理解決兩類基本的解三角形問題.【重點難點】1.重點:余弦定理的證明及其應用.2.難點:理解余弦定理的作用及其適用范圍.【學習過程】一、自主學習:問題:在三角形中,已知兩角及一邊,或已知兩邊
2024-12-12 20:24
【摘要】BCA創(chuàng)設情境BABCAC??.||,||ACbBCaBA,求夾角是,如果???數學理論CabbacBacacbAbccbacos2cos2cos2222222222?????????數學理論.2cos,2cos,2cos22222
2024-11-21 23:32
【摘要】余弦定理(2)【學習目標】1.利用余弦定理求三角形的邊長.2.利用余弦定理的變形公式求三角形的內角.【重點難點】靈活運用余弦定理求三角形邊長和內角【學習過程】一、自主學習:任務1:余弦定理:2a=____________2b=____________2c=__________
【摘要】余弦定理(二)自主學習知識梳理1.在△ABC中,邊a、b、c所對的角分別為A、B、C,則有:(1)A+B+C=________,A+B2=____________.(2)sin(A+B)=__________,cos(A+B)=__________,tan(A+B)=_______
2024-11-23 23:20
【摘要】余弦定理(一)自主學習知識梳理1.余弦定理三角形中任何一邊的________等于其他兩邊的________的和減去這兩邊與它們的______的余弦的積的________.即a2=___________________,b2=__________________,c2=________________.2.余弦定
2024-12-09 06:38
【摘要】問題探究CcoscbbacBcosaccabAcosbccbacbaCBAABC2221222222222?????????? ,請證明下列結論:,,分別是的對邊,,中,:在 探究以解決哪些問題?請問余弦定理可對角有關的三角問題,對邊,:正弦定理可以解決與 探究2嗎
2025-03-14 14:29
【摘要】第四課時余弦定理(二)一、學習目標:、余弦定理在解決各類三角形中的應用。、余弦定理應用范圍的認識,處理問題時能選擇較為簡捷的方法。3,。通過訓練培養(yǎng)學生的分類討論,數形結合,優(yōu)化選擇等思想。二、學習重難點:重點:正、余弦定理的綜合運用.難點:、余弦定理與三角形性質的結合;、余弦定理的聯系.三、自主預習:四、能力技能交流:活動一、靈活應用
2025-06-10 23:27
【摘要】第一篇:2014年高中數學新人教A版必修5 教材分析 三維目標 知識與技能:掌握余弦定理的兩種表示形式及證明余弦定理的向量方法,并會運用余弦定理解決兩類基本的解三角形問題。 過程與方法:利用向...
2024-10-25 13:05
【摘要】正余弦定理的應用1、角的關系2、邊的關系3、邊角關系?180???CBAcbacba????,大角對大邊大邊對大角三角形中的邊角關系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2024-11-22 08:48
【摘要】正弦定理和余弦定理沈陽二中數學組高中數學⑤B版正弦定理第一節(jié)思考:在直角三角形中,“邊”與“角”的關系Rt中ABC?222abc??sin,sinacAbcB??sinsinabAB?sin1C?sinsinsinabc
2024-11-21 11:59