【總結(jié)】正余弦定理的應(yīng)用1、角的關(guān)系2、邊的關(guān)系3、邊角關(guān)系?180???CBAcbacba????,大角對大邊大邊對大角三角形中的邊角關(guān)系RCcBbAa2sinsinsin???CabbacBaccabAbccbacos2cos2cos2222222
2024-11-18 12:09
【總結(jié)】第一篇:高中數(shù)學(xué)《余弦定理》教案1蘇教版必修5 第1課時 知識網(wǎng)絡(luò) 三角形中的向量關(guān)系→余弦定理學(xué)習(xí)要求 1.掌握余弦定理及其證明;2.體會向量的工具性; 3.能初步運用余弦定理解斜三角形....
2024-10-26 01:32
【總結(jié)】第一篇:高中數(shù)學(xué)《余弦定理》教案2蘇教版必修5 第2課時余弦定理 【學(xué)習(xí)導(dǎo)航】 知識網(wǎng)絡(luò) 余弦定理ì航運問題中的應(yīng)用 í ?判斷三角形的形狀 學(xué)習(xí)要求 1.能把一些簡單的實際問題轉(zhuǎn)化為...
2024-10-28 16:14
【總結(jié)】正弦定理作業(yè)1、在ABC?中,若Abasin23?,則B等于()A.?30B.?60C.?30或?150D.?60或?120[2、在ABC?中,已知?45,1,2???Bcb,則a等于()A.226?B.
2024-11-30 14:39
【總結(jié)】第2課時余弦定理...如圖,某隧道施工隊為了開鑿一條山地隧道,需要測算隧道通過這座山的長度.工程技術(shù)人員先在地面上選一適當(dāng)?shù)奈恢肁,量出A到山腳B、C的距離,其中AB=km,AC=1km,再利用經(jīng)緯儀測出A對山腳BC(即線段BC)的張角∠BAC=150
2024-12-08 02:37
【總結(jié)】知識回顧1.正弦定理2.面積公式3.余弦定理4.判斷三角形的形狀典例精析。的形狀是,則且,中,已知:在 例_______ABCCcosBcosBsinabABC????3231的值。的大小及求,,且的對邊,已知,,分別是,,中,:在 例cBsinbAb
2025-03-12 14:29
【總結(jié)】正弦定理、余弦定理及其運用?一、考綱解讀?二、正弦定理及其變形?三、余弦定理及其變形?四、實際應(yīng)用問題中的基本概念和術(shù)語?五、例題講解?六、高考題再現(xiàn)?七、小結(jié)本節(jié)課內(nèi)容目錄:一、考綱解讀:在課標(biāo)及《教學(xué)要求》中對正弦定理、余弦定理的要求均為理解(B)。在高考試題中
2024-11-17 23:32
【總結(jié)】第一頁,編輯于星期六:點二十九分。,第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理,第二頁,編輯于星期六:點二十九分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點二十九分。,...
2024-10-22 18:39
【總結(jié)】正、余弦定理綜合應(yīng)用(1)實際問題抽象概括示意圖數(shù)學(xué)模型推理演算數(shù)學(xué)模型的解實際問題的解還原說明實際問題應(yīng)用模型問題1.怎樣測量一個底部不能到達的建筑物的高度?如圖,在北京故宮的四個角上各矗立著一座角樓,如何通過測量,求得角樓的高度?
【總結(jié)】1.3正弦定理、余弦定理的應(yīng)用學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入2020年10月12日,中國宣布了自己的探月計劃:中國將在2020年把“嫦娥一號”繞月衛(wèi)星送入太空,2020年實現(xiàn)發(fā)射軟著陸器登陸月球.路透社報道:中國將在2024年把人送上月球.
2024-11-18 08:11
【總結(jié)】正、余弦定理應(yīng)用(2)例1.如果△A1B1C1的三個內(nèi)角的余弦值分別等于△A2B2C2的三個內(nèi)角的正弦值,則()(A)△A1B1C1和△A2B2C2都是銳角三角形(B)△A1B1C1和△A2B2C2都是鈍角三角形(C)△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形(D)△A1
2024-11-18 08:48
【總結(jié)】正弦定理、余弦定理的應(yīng)用(一)課時目標(biāo);、余弦定理解決生產(chǎn)實踐中的有關(guān)距離的問題.1.方位角:指從正北方向線按________方向旋轉(zhuǎn)到目標(biāo)方向線所成的水平角.如圖中的A點的方位角為α.2.計算不可直接測量的兩點間的距離是正弦定理和余弦定理的重要應(yīng)用之一.一、填空題1.如圖,A、B兩點間的距
2024-12-05 10:14
【總結(jié)】1.2余弦定理△ABC中,已知邊a,b及∠C.1.若∠C=90°,則c2=a2+b2.2.若∠C是銳角,如左下圖,作AD⊥BC于點D,于是AD=b·sinC,CD=b·cos_C,BD=a-bcos_C.3.若∠C為鈍角,如右上圖,作
【總結(jié)】余弦定理(二)課時目標(biāo)、余弦定理;、余弦定理解三角形的有關(guān)問題.1.正弦定理及其變形(1)asinA=bsinB=csinC=______.(2)a=__________,b=__________,c=__________.(3)sinA=__________,sinB=__________,
【總結(jié)】正弦定理正弦定理回憶一下直角三角形的邊角關(guān)系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??sinsin1sin?CCcBbAasinsinsin??即正弦定理,定理對任意
2024-11-17 11:59