【摘要】矩陣乘法的性質(zhì)?我們知道實(shí)數(shù)乘法運(yùn)算滿足一定的運(yùn)算律。即對實(shí)數(shù)?a,b,c有結(jié)合律:(ab)c=a(bc);?交換律:ab=ba;削去律:設(shè)a≠0,如果ab=ac,那么?b=c;如果ba=ca,那么b=c探究類比實(shí)數(shù)乘法的運(yùn)算律,二階矩陣的乘法是否也滿足某些運(yùn)算律??首先考察矩陣的
2024-08-16 09:02
【摘要】上海八中許穎龍春朝2022年12月10日思考問題:記甲、乙、丙三位同學(xué)的語文平時(shí)、期中、期末成績?yōu)榫仃嘇,平時(shí)、期中、期末成績的所占比例為矩陣B,這三位同學(xué)的語文總評成績用矩陣C表示。???????????908060807090757080A????
2024-08-27 02:02
【摘要】酉矩陣與Hermite矩陣的淺談韋龍201131402摘要科學(xué)在發(fā)展,社會(huì)在進(jìn)步,人們對于數(shù)學(xué)的理解越來越深刻,數(shù)學(xué)應(yīng)用于日常生活生產(chǎn)越來越廣泛。在數(shù)學(xué)的很多分支和工程實(shí)際應(yīng)用中,都涉及到一些特殊的矩陣的性質(zhì)及構(gòu)造.本文討論兩類特殊的矩陣——酉矩陣和Hermite矩陣.酉矩陣和Hermite矩陣作為兩類特殊的矩陣,有很多良好的性質(zhì),在矩陣?yán)碚撝芯哂信e足輕重的作用。本文
2025-06-28 04:11
【摘要】伴隨矩陣的性質(zhì)及其應(yīng)用摘要:伴隨矩陣是矩陣?yán)碚摷熬€性代數(shù)中的一個(gè)基本概念,是許多數(shù)學(xué)分支研究的重要工具。伴隨矩陣作為矩陣中較為特殊的一類,,伴隨矩陣只是作為求解逆矩陣的工具出現(xiàn)的,,并討論其證明過程,得到一系列有意義的結(jié)論。(1)介紹伴隨矩陣在其行列式、秩等方面的基本性質(zhì);(2)研究數(shù)乘矩陣、乘積矩陣、分塊矩陣的伴隨矩陣的運(yùn)算性質(zhì)及伴隨矩陣在逆等方面的運(yùn)算性質(zhì);(3)研究矩
2025-06-27 19:25
【摘要】循環(huán)矩陣的性質(zhì)研究郭宇澤20081112021.相關(guān)概念具有以下形式的階方陣稱為關(guān)于的循環(huán)矩陣顯然,由首行元素惟一確定,因此可簡記為.特別地,階循環(huán)矩陣:稱為階基本循環(huán)矩陣,簡記為:顯然,(階單位矩陣)都是循環(huán)矩陣,由此得,設(shè),則,這時(shí).記為復(fù)數(shù)域上的全體階方陣,為實(shí)數(shù)域上的全體階方陣,它們分別構(gòu)成復(fù)數(shù)域和實(shí)數(shù)域上的維向量空間,記為矩
2025-06-25 06:03
【摘要】學(xué)生畢業(yè)設(shè)計(jì)(論文)題目分塊矩陣的性質(zhì)及其應(yīng)用摘要分塊矩陣是線性代數(shù)中非常重要的一部分內(nèi)容,分塊矩陣的性質(zhì)是解題最基本的依據(jù),本文通過對各類典型例題的分析和處理,來論述分塊矩陣的幾個(gè)性質(zhì)及其在高等數(shù)學(xué)中的應(yīng)用。關(guān)鍵詞:分塊矩陣,性質(zhì),應(yīng)用。榆林學(xué)院本科畢業(yè)設(shè)計(jì)
2025-06-30 13:11
【摘要】線性系統(tǒng)的時(shí)域分析狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)與計(jì)算(1/1)狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)與計(jì)算?下面進(jìn)一步討論前面引入的狀態(tài)轉(zhuǎn)移矩陣,主要內(nèi)容為:?基本定義?矩陣指數(shù)函數(shù)和狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)?狀態(tài)轉(zhuǎn)移矩陣的性質(zhì)狀態(tài)轉(zhuǎn)移矩陣的定義(1/4)狀態(tài)轉(zhuǎn)移矩陣的定義?定義對于線性定常連續(xù)系統(tǒng)x’?Ax,
2025-05-17 21:34
【摘要】畢業(yè)論文開題報(bào)告題目:正定矩陣與廣義正定矩陣的性質(zhì)及其應(yīng)用學(xué)生姓名:時(shí)小玲學(xué)號:121005217專業(yè):信息與計(jì)算科學(xué)指導(dǎo)教師:李云紅2016年04月14日開題報(bào)告填寫要求
2025-01-24 16:30
【摘要】......ACM中矩陣乘法的應(yīng)用(與原篇有刪改)by三江小渡Categories:數(shù)據(jù)結(jié)構(gòu)和算法,算法理論、技巧、總結(jié)Tags:矩陣乘法Comments:NoCommentsPublishedon:2011年09月
2025-04-19 12:27
【摘要】本科畢業(yè)論文論文題目:冪零矩陣的性質(zhì)與應(yīng)用學(xué)生姓名:白雪學(xué)號:1004970231專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)班級:數(shù)學(xué)1002班指導(dǎo)教師:徐穎玲
2025-01-16 18:17
【摘要】矩陣指數(shù)函數(shù)的性質(zhì)與計(jì)算PROPERTIESANDCALCULATIONOFMATRIXEXPONENTIALFUNCTION指導(dǎo)教師姓名:申請學(xué)位級別:學(xué)士論文提交日期:2014年6月8日摘要矩陣函數(shù)是矩陣
2024-08-16 10:29
【摘要】中山大學(xué)本科畢業(yè)論文(設(shè)計(jì))(2016屆)題目:伴隨矩陣及其應(yīng)用姓名:學(xué)號:學(xué)院:數(shù)學(xué)學(xué)
2025-06-29 03:33
【摘要】伴隨矩陣的若干性質(zhì)及應(yīng)用摘要矩陣是學(xué)習(xí)高等代數(shù)中的一個(gè)非常重要的知識點(diǎn),,,,對矩陣、,在以后的學(xué)習(xí)中遇到關(guān)于伴隨矩陣的問題我們可以直接應(yīng)用這些性質(zhì),使問題變得簡單.關(guān)鍵詞矩陣伴隨矩陣特征值引言因?yàn)榘殡S矩陣是學(xué)習(xí)矩陣的一個(gè)重要知識點(diǎn),在計(jì)算中經(jīng)常出現(xiàn),、伴隨矩陣的轉(zhuǎn)置、伴隨矩陣的特征值、幾個(gè)特殊矩陣的伴隨矩陣的性質(zhì),.本文出現(xiàn)的矩陣和均為階方陣
【摘要】整體分析及總體剛度矩陣的性質(zhì)整體分析2③④①②3yP3xP314562xP1yPaaaa圖示結(jié)構(gòu)的網(wǎng)格共有四個(gè)單元和六個(gè)節(jié)點(diǎn)。在節(jié)點(diǎn)1、4、6共有四個(gè)支桿支承。結(jié)構(gòu)的載荷已經(jīng)轉(zhuǎn)移為結(jié)點(diǎn)載荷。整體分析的四個(gè)步驟:1、建立整體剛度矩陣;2
2025-05-14 14:33
【摘要】幾類特殊矩陣的性質(zhì)的探討摘要隨著特殊矩陣的應(yīng)用越來越廣泛,人們對特殊矩陣的性質(zhì)的研究也越來越深入。相應(yīng)的,越來越多有關(guān)特殊矩陣的論文和期刊也層出不窮的發(fā)表。本文主要具體分析了四種特殊矩陣:伴隨矩陣、型矩陣、正交矩陣、冪零矩陣。論文的具體展開如下:第一章主要介紹特殊矩陣的背景以及發(fā)展?fàn)顩r,加深了我對特殊矩陣的進(jìn)一步認(rèn)識;第二章講述了一些預(yù)備知
2025-06-30 17:24