【摘要】1.設(shè)函數(shù)。(1)當(dāng)a=1時,求的單調(diào)區(qū)間。(2)若在上的最大值為,求a的值。解:對函數(shù)求導(dǎo)得:,定義域為(0,2)當(dāng)a=1時,令當(dāng)為增區(qū)間;當(dāng)為減函數(shù)。當(dāng)有最大值,則必不為減函數(shù),且0,為單調(diào)遞增區(qū)間。最大值在右端點取到。。2.已知函數(shù)其中實數(shù)。(I)若a=2,求曲線在點處的切線方程;(II)若在x=1處取得極值,試討論的單調(diào)
2025-03-27 07:03
【摘要】導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值適用學(xué)科高中數(shù)學(xué)適用年級高中三年級適用區(qū)域通用課時時長(分鐘)60知識點函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學(xué)目標(biāo)掌握函數(shù)的單調(diào)性求法,會求函數(shù)的函數(shù)的極值,會求解最值問題,教學(xué)重點會利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性,會求解函數(shù)的最值。教學(xué)難點熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應(yīng)用
2024-08-06 05:39
【摘要】導(dǎo)數(shù)單調(diào)性、極值、最值教學(xué)目標(biāo):掌握運用導(dǎo)數(shù)求解函數(shù)單調(diào)性的步驟與方法重點難點:能夠判定極值點,并能求解閉區(qū)間上的最值問題利用導(dǎo)數(shù)研究函數(shù)的極值、最值:(1)求導(dǎo)數(shù);(2)解方程;(3)使不等式成立的區(qū)間就是遞增區(qū)間,使成立的區(qū)間就是遞減區(qū)間。,右側(cè)____0,那么是的極大值;如果在根附近的左側(cè)____0,右側(cè)____0,那么是的極小值典型例題:
【摘要】課題:導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值科目:數(shù)學(xué)教學(xué)對象:高三課時第1課時提供者:段秀香單位:靜海第六中學(xué)一、教學(xué)內(nèi)容分析 現(xiàn)在中學(xué)數(shù)學(xué)新教材中,導(dǎo)數(shù)(選修2-2)處于一種特殊的地位,是高中數(shù)學(xué)知識的一個重要交匯點,是聯(lián)系多個章節(jié)內(nèi)容以及解決相關(guān)問題的重要工具。天津高考中必有考一道解答題(如2009-2011年常規(guī)題或2012-2014年壓軸題)和一道選擇
2025-04-20 00:39
【摘要】函數(shù)的單調(diào)性和最值考試要求1、函數(shù)單調(diào)區(qū)間的判定2、利用函數(shù)單調(diào)性求最值典題精講板塊一:函數(shù)的單調(diào)性與單調(diào)區(qū)間1、增函數(shù)、減函數(shù)增函數(shù)減函數(shù)定義一般地,設(shè)函數(shù)f(x)的定義域為I,如果對于定義域I內(nèi)某個區(qū)間D上的任意兩個自變量x1,x2當(dāng)x1x2時,都有____________,那么就說函數(shù)f(x
2025-05-19 07:45
【摘要】....導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點的導(dǎo)數(shù)值為0是該函數(shù)在這點取極值的( ?。〢.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( ?。〢.極小值﹣1,極大值3 B.極小值﹣2,極
2025-03-28 00:40
【摘要】導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點的導(dǎo)數(shù)值為0是該函數(shù)在這點取極值的( ?。〢.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( )A.極小值﹣1,極大值3 B.極小值﹣2,極大值3C.極小值﹣1,極大值1 D.極小值﹣2,極大值23.函數(shù)f(x)=x3+ax2﹣3x﹣9,已知f
2024-08-16 05:49
【摘要】函數(shù)單調(diào)的概念?我們在函數(shù)的基本性質(zhì)中曾經(jīng)討論過函數(shù)的單調(diào)性問題,在此我們再次回顧一下函數(shù)單調(diào)的定義。?定義設(shè)函數(shù)f(x)在區(qū)間(a,b)上有定義,如果對于區(qū)間(a,b)內(nèi)的任意兩點x1,x2,滿足?(1)當(dāng)x1x2時,恒有f(x1)?f(x2)(或f(x1)f(x2))
2024-08-26 20:29
【摘要】Email:lihongqing999@:570206海口市海秀大道59號海南華僑中學(xué)李紅慶工作室函數(shù)的單調(diào)性與最值漫談海南華僑中學(xué)黃玲玲函數(shù)的單調(diào)性與最值是中學(xué)數(shù)學(xué)的核心內(nèi)容.從中學(xué)數(shù)學(xué)知識的網(wǎng)絡(luò)來看,函數(shù)的單調(diào)性與最值在中學(xué)數(shù)學(xué)中起著“紐帶”的作用,她承前于函數(shù)的值域、方程有解的條件、不等式證明,啟后于數(shù)列的最值問題、導(dǎo)數(shù)的應(yīng)用等知識.例如:求函數(shù)的值域,令,則,,則函
2025-05-19 01:34
【摘要】......函數(shù)的單調(diào)性與最值復(fù)習(xí):按照列表、描點、連線等步驟畫出函數(shù)的圖像.圖像在軸的右側(cè)部分是上升的,當(dāng)在區(qū)間[0,+)上取值時,隨著的增大,相應(yīng)的值也隨著增大,如果取∈[0,+),得到,,那么當(dāng)<
2025-05-19 01:56
【摘要】天津市2018屆高三數(shù)學(xué)函數(shù)單調(diào)性與最值學(xué)校:___________姓名:___________班級:___________考號:___________1.若是上的單調(diào)遞增函數(shù),則實數(shù)的取值范圍為()A.B.C.D.2.已知函數(shù)在區(qū)間上是增函數(shù),則的取值范圍是()A.B.C.
2025-03-28 07:09
【摘要】函數(shù)的單調(diào)性與導(dǎo)數(shù)???教學(xué)內(nèi)容:人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)》選修1-1P97—101?教學(xué)目標(biāo):(1)知識目標(biāo):能探索并應(yīng)用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系求單調(diào)區(qū)間,能由導(dǎo)數(shù)信息繪制函數(shù)大致圖象。?(2)能力目標(biāo):培養(yǎng)學(xué)生的觀察能力、歸納能力,增強(qiáng)數(shù)形結(jié)合的思維意識。
2025-05-19 02:09
【摘要】函數(shù)的單調(diào)性與最值一、知識梳理1.增函數(shù)、減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域為I,區(qū)間D?I,如果對于任意x1,x2∈D,且x1f(x2).2.單調(diào)區(qū)間的定義若函數(shù)y=f(x)在區(qū)間D上是增函數(shù)或減函數(shù),則稱函數(shù)y=
2025-03-27 12:17
【摘要】第二章第三節(jié)函數(shù)的單調(diào)性與最值一、選擇題1.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( )A.y=x3 B.y=|x|+1C.y=-x2+1 D.y=2-|x|2.下列函數(shù)f(x)中,滿足“對任意x1,x2∈(0,+∞),當(dāng)x1f(x2)”的是( )A.f(x)=
【摘要】§1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)(第1課時)教學(xué)目標(biāo)1.了解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握求函數(shù)(對多項式函數(shù)一般不超過三次)的單調(diào)區(qū)間;教學(xué)重點利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間教學(xué)難點利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間教學(xué)方法講練結(jié)合法教學(xué)用具小
2025-04-19 22:05