【摘要】1“點差法”在解析幾何題中的應(yīng)用在處理直線與圓錐曲線相交形成的弦中點的有關(guān)問題時,我們經(jīng)常用到如下解法:設(shè)弦的兩個端點坐標(biāo)分別為????1122,,xyxy、,代入圓錐曲線得兩方程后相減,得到弦中點坐標(biāo)與弦所在直線斜率的關(guān)系,然后加以求解,這即為“點差法”,此法有著不可忽視的作用,其特點是巧代斜率.本文列舉數(shù)例,以供參考.1求弦
2025-01-12 16:58
【摘要】淺談解析幾何中的“點差法”高二(七班)第一學(xué)習(xí)小組易正貴整理2022年5月解析幾何在高考中占有重要地位,一般放在試題倒數(shù)第二題,有時也成為壓軸題。在高考中,絕大多數(shù)學(xué)生只能完成第1問,第2問,因計算量大而難無法完成。在平時學(xué)習(xí)及復(fù)習(xí)過程中,要讓自己真正理解解析幾何中的最優(yōu)解法與算法,這樣在考試中才能作出正確的、最優(yōu)的解法選擇,這樣
2025-01-11 21:36
【摘要】九年級一元二次方程(知識點詳解)一元二次方程的根與系數(shù)的關(guān)系(韋達定理)知識點及應(yīng)用解析1、定義:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩個根,則有x1+x2=-,x1·x2=。對于二次項系數(shù)為1的一元二次方程x2+px+q=0,則有x1+x2=-p,x1·x2=q2、應(yīng)用的前提條件:根的判別式△≥0方程有實數(shù)根
2025-06-26 01:43
【摘要】韋達定理及其應(yīng)用【內(nèi)容綜述】 設(shè)一元二次方程有二實數(shù)根,則,?! ∵@兩個式子反映了一元二次方程的兩根之積與兩根之和同系數(shù)a,b,c的關(guān)系,稱之為韋達定理。其逆命題也成立。韋達定理及其逆定理作為一元二次方程的重要理論在初中數(shù)學(xué)競賽中有著廣泛的應(yīng)用。本講重點介紹它在五個方面的應(yīng)用?!疽c講解】 1.求代數(shù)式的值 應(yīng)用韋達定理及代數(shù)式變換,可以求出一元二次方程兩根的
2025-06-28 01:34
【摘要】【標(biāo)題】韋達定理在中學(xué)數(shù)學(xué)中的應(yīng)用【作者】袁孟俊【關(guān)鍵詞】韋達定理方程代數(shù)三角問題解析幾何【指導(dǎo)老師】秦小二【專業(yè)】數(shù)學(xué)教育【正文】1引言韋達(Viete,F(xiàn)rancois,seigneurdeLaBigotiere)是法國十六世紀(jì)最有影響的數(shù)學(xué)家之
2024-12-08 07:53
【摘要】解一元二次方程(3)公式法解一元二次方程推導(dǎo)ax2+bx+c=0x2++=0x2+=-x2++=-+(x+)2=x=根的判別式(b2-4ac)方程有兩個不相等的實數(shù)根.方程有兩個相等的實數(shù)根(或說方程有一個實數(shù)根).方程沒有實數(shù)根.例:關(guān)于的一元二次方程有實
2025-06-28 17:13
【摘要】韋達定理的應(yīng)用一、典型例題例1:已知關(guān)于x的方程2x-(m+1)x+1-m=0的一個根為4,求另一個根。解:設(shè)另一個根為x1,則相加,得x 例2:已知方程x-5x+8=0的兩根為x1,x2,求作一個新的一元二次方程,使它的兩根分別為和.解:∵又∴代入得,∴新方程為例3:判斷是不是方程9x-10
2025-07-02 18:05
【摘要】根的判別式和韋達定理是實系數(shù)一元二次方程的重要基礎(chǔ)知識,利用它們可進一步研究根的性質(zhì),也可以將一些表面上看不是一元二次方程的問題轉(zhuǎn)化為一元二次方程來討論.1.?判別式的應(yīng)用例1????????(1987年武漢等四市聯(lián)賽題)已知實數(shù)a、b、c、R、P滿足條件PR>1,Pc+2b+Ra=:一元二次方
2025-03-29 05:21
【摘要】點差法公式在橢圓中點弦問題中的妙用定理在橢圓(>>0)中,若直線與橢圓相交于M、N兩點,點是弦MN的中點,弦MN所在的直線的斜率為,則.證明:設(shè)M、N兩點的坐標(biāo)分別為、,則有,得又同理可證,在橢圓(>>0)中,若直線與橢圓相交于M、N兩點,點是弦MN的中點,弦MN所在的直線的斜率為,則.典題妙解例1設(shè)橢圓方程為,過點的直線交橢圓于點A、B,O為坐標(biāo)原
2025-03-28 05:46
【摘要】1.直線的傾斜角與斜率:(1)直線的傾斜角:在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向旋轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為叫做直線的傾斜角.傾斜角,斜率不存在.(2)直線的斜率:.(、).2.直線方程的五種形式:(1)點斜式:(直線過點,且斜率為).注:當(dāng)直線斜率不存在時,不能用點斜式表示,此時方程為.(2)斜截式:(b
2025-06-25 16:55
【摘要】韋達定理及方程解的應(yīng)用一、選擇題1.若x=﹣2是關(guān)于x的一元二次方程的一個根,則a的值為()A.﹣1或4B.﹣1或﹣4C.1或﹣4D.1或42.如果a、b是方程x2-3x+1=0的兩根,那么代數(shù)式a2+2b2-3b的值為()B.-6D.-73.方程有兩個實數(shù)根
2024-08-16 16:37
【摘要】一元二次方程根與系數(shù)的關(guān)系習(xí)題1、如果方程的兩根是、,那么=,=。2、已知、是方程的兩個根,那么:=;=;;;;=。3、以2和3為根的一元二次方程(二次項系數(shù)為1)是。
2024-08-06 11:16
【摘要】點差法公式在雙曲線中點弦問題中的妙用廣西南寧外國語學(xué)校隆光誠(郵政編碼530007)圓錐曲線的中點弦問題是高考常見的題型,在選擇題、填空題和解答題中都是命題的熱點。它的一般方法是:聯(lián)立直線和圓錐曲線的方程,借助于一元二次方程的根的判別式、根與系數(shù)的關(guān)系、中點坐標(biāo)公式及參數(shù)法求解。若已知直線與圓錐曲線的交點(弦的端點)坐標(biāo),將這兩點代入圓錐曲線的方程并對所得
2025-03-28 05:45
【摘要】韋達定理及其應(yīng)用(一)如果方程ax2+bx+c=0(a≠0)的兩根為x1、x2,則x1+x2=-ba,x1·x2=ca.如果方程x2+px+q=0(a≠0)的兩根為x1、x2,則-px1+x2=x1·x2=q,.以x1、x2為根的一元二次方程(二次項系數(shù)為
2024-11-23 12:02
【摘要】平面解析幾何知識點歸納◆知識點歸納直線與方程1.直線的傾斜角規(guī)定:當(dāng)直線與軸平行或重合時,它的傾斜角為范圍:直線的傾斜角的取值范圍為:,斜率公式:經(jīng)過兩點,的直線的斜率公式為3.直線方程的幾種形式名稱方程說明適用條件斜截式是斜率是縱截距與軸不垂直的直線點斜式是直線上的已知點兩點式是直線上的兩個