【總結(jié)】排列組合專題訓(xùn)練1.(2014?四川)六個(gè)人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ) A.192種B.216種C.240種D.288種考點(diǎn):排列、組合及簡單計(jì)數(shù)問題.菁優(yōu)網(wǎng)版權(quán)所有專題:應(yīng)用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2024-08-14 07:27
【總結(jié)】排列,組合問題的解答策略第四節(jié)相鄰問題捆綁法?例13:6名同學(xué)排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個(gè)??例15:計(jì)劃在某畫廊展開10幅不同的畫,
2024-11-10 22:56
【總結(jié)】......計(jì)數(shù)問題教學(xué)目標(biāo)、組合的意義;正確區(qū)分排列、組合問題;、排列數(shù)和組合數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列或組合;;、分析與數(shù)字有關(guān)的計(jì)數(shù)問題,以及與其他專題的綜合運(yùn)用,培養(yǎng)
2025-03-24 03:08
【總結(jié)】怎樣解排列組合問題在這幾次??贾?,發(fā)現(xiàn)同學(xué)們在學(xué)習(xí)排列組合中有許多問題?,F(xiàn)就排列組合給同學(xué)們講講幾種方法。首先,怎樣分析排列組合綜合題?1)使用“分類計(jì)數(shù)原理”還是“分步計(jì)數(shù)原理”要根據(jù)我們完成某事件時(shí)采取的方式而定,分類來完成這件事時(shí)用“分類計(jì)數(shù)原理”,分步來完成這件事時(shí)就用“分步計(jì)數(shù)原理”,怎樣確定分類,還是分步驟?“分類”表現(xiàn)為其中任何一類均可獨(dú)立完成所給的事件,而
2025-06-07 18:35
【總結(jié)】高二數(shù)學(xué)集體備課學(xué)案與教學(xué)設(shè)計(jì)章節(jié)標(biāo)題選修2-3排列組合專題計(jì)劃學(xué)時(shí)1學(xué)案作者楊得生學(xué)案審核張愛敏高考目標(biāo)掌握排列、組合問題的解題策略三維目標(biāo)一、知識與技能。?;能運(yùn)用解題策略解決簡單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力??.二、過程與方法通過問題的探究,體會(huì)知識的類比遷移。以
2024-08-14 06:55
【總結(jié)】;能運(yùn)用解題策略解決簡單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力合問題.教學(xué)目標(biāo)計(jì)數(shù)原理。完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-11-09 13:22
【總結(jié)】榆林教學(xué)資源網(wǎng)排列組合問題的20種解法排列組合問題聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,因此解決排列組合問題,首先要認(rèn)真審題,弄清楚是排列問題、組合問題還是排列與組合綜合問題;其次要抓住問題的本質(zhì)特征,采用合理恰當(dāng)?shù)姆椒▉硖幚怼?加法原理)完成一件事,有類辦法,在第1類辦法中有種不
2025-03-25 02:37
【總結(jié)】......“排列、組合”??紗栴}[題型分析·高考展望] 該部分是高考數(shù)學(xué)中相對獨(dú)特的一個(gè)知識板塊,知識點(diǎn)并不多,但解決問題的方法十分靈活,主要內(nèi)容是分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理、排列與組合、二項(xiàng)式定理等,
2025-03-26 00:39
【總結(jié)】 排列組合專題復(fù)習(xí)及經(jīng)典例題詳解1.學(xué)習(xí)目標(biāo)掌握排列、組合問題的解題策略(1)特殊元素優(yōu)先安排的策略:(2)合理分類與準(zhǔn)確分步的策略;(3)排列、組合混合問題先選后排的策略;(4)正難則反、等價(jià)轉(zhuǎn)化的策略;(5)相鄰問題捆綁處理的策略;(6)不相鄰問題插空處理的策略.綜合運(yùn)用解題策略解決問題.:(1)知識梳理1.分類計(jì)數(shù)原理(加法原理
2025-04-17 01:31
【總結(jié)】排列組合應(yīng)用題數(shù)學(xué)教研組盛建芳復(fù)習(xí)回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2024-08-24 23:43
【總結(jié)】1、基本概念和考點(diǎn)2、合理分類和準(zhǔn)確分步3、特殊元素和特殊位置問題4、相鄰相間問題5、定序問題6、分房問題7、環(huán)排、多排問題12、小集團(tuán)問題10、先選后排問題9、平均分組問題11、構(gòu)造模型策略8、實(shí)驗(yàn)法(枚舉法)13、其它特殊方法排列組合應(yīng)用題解法綜述(目錄)名稱內(nèi)容
2024-08-25 01:49
【總結(jié)】問題1把a(bǔ)bcd平均分成兩組有_____多少種分法?結(jié)論:平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要除以,即m!,其中m表示組數(shù)。abcdacbdadbccdbdbcadacab這兩個(gè)在分組時(shí)只能算一個(gè)mmA均分不安排工作的問題例1:12本不
2024-08-14 07:24
【總結(jié)】排列組合之定序問題?教學(xué)目標(biāo):掌握定序問題的解決方法?教學(xué)重點(diǎn):掌握倍縮法、空位法和逐個(gè)插空法?教學(xué)難點(diǎn):能夠?qū)⒕唧w問題轉(zhuǎn)化為定序問題問題總述對若干個(gè)元素進(jìn)行排列時(shí)要求某幾個(gè)元素順序一定的排列問題,這類問題比較抽象解決方法技巧性很強(qiáng),特別是一些具體問題要求能夠轉(zhuǎn)化為定序問題例題講解
2024-08-14 07:17
【總結(jié)】.公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2024-08-04 05:35
【總結(jié)】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會(huì)某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個(gè)區(qū)域,現(xiàn)有6種不同顏色的花,要求每個(gè)區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????