【總結(jié)】復(fù)合函數(shù)、抽象函數(shù)、函數(shù)的圖像一、復(fù)合函數(shù)設(shè)y=f(u),uB,u=g(x),xA,通過(guò)變量u,得到y(tǒng)關(guān)于x的函數(shù),那么稱(chēng)這個(gè)函數(shù)為函數(shù)y=f(u)和u=g(x)的復(fù)合函數(shù),記作y=f(g(x)),其中y=f(u)叫做外函數(shù),u=g(x)叫做內(nèi)函數(shù),u稱(chēng)為中間變量,它的取值范圍是g(x)的值域的子集。1、復(fù)合函數(shù)的定義域:要看清是已知f(x)的定義域求f[g(x)]的定義域,
2025-04-17 13:06
【總結(jié)】抽象函數(shù)的定義域1、已知的定義域,求復(fù)合函數(shù)的定義域由復(fù)合函數(shù)的定義我們可知,要構(gòu)成復(fù)合函數(shù),則內(nèi)層函數(shù)的值域必須包含于外層函數(shù)的定義域之中,因此可得其方法為:若的定義域?yàn)椋蟪鲋械慕獾姆秶?,即為的定義域。2、已知復(fù)合函數(shù)的定義域,求的定義域方法是:若的定義域?yàn)椋瑒t由確定的范圍即為的定義域。3、已知復(fù)合函數(shù)的定義域,求的定義域結(jié)合以上一、二兩類(lèi)定義域的求法,我們
2025-03-25 02:32
【總結(jié)】習(xí)題精選精講含有函數(shù)記號(hào)“”有關(guān)問(wèn)題解法由于函數(shù)概念比較抽象,學(xué)生對(duì)解有關(guān)函數(shù)記號(hào)的問(wèn)題感到困難,學(xué)好這部分知識(shí),能加深學(xué)生對(duì)函數(shù)概念的理解,更好地掌握函數(shù)的性質(zhì),培養(yǎng)靈活性;提高解題能力,優(yōu)化學(xué)生數(shù)學(xué)思維素質(zhì)?,F(xiàn)將常見(jiàn)解法及意義總結(jié)如下:一、求表達(dá)式::即用中間變量表示原自變量的代數(shù)式,從而求出,這也是證某些公式或等式常用的方法,此法解培養(yǎng)學(xué)生的靈活性及變形能力。例1:
【總結(jié)】精品資源例析三角函數(shù)最值問(wèn)題的若干解法三角函數(shù)是高中數(shù)學(xué)中重要的內(nèi)容之一,而最值問(wèn)題的求解是三角函數(shù)的重要題型,在近幾年的高考題中經(jīng)常出現(xiàn),極具靈活性?,F(xiàn)舉例說(shuō)明解決這種題型的若干方法,供大家參考。1.利用配方法例1.求函數(shù)的最值。解:將函數(shù)化為,配方得當(dāng)當(dāng)例2.若,那么函數(shù)的最小值是(
2025-03-24 07:06
【總結(jié)】第四章過(guò)程抽象-函數(shù)本章內(nèi)容?子程序?C++的函數(shù)?變量的局部性和變量的生存期?函數(shù)的嵌套調(diào)用?遞歸函數(shù)?宏定義?內(nèi)聯(lián)函數(shù)?帶缺省值的形式參數(shù)?函數(shù)名重載基于過(guò)程抽象的程序設(shè)計(jì)?人們?cè)谠O(shè)計(jì)一個(gè)復(fù)雜的程序時(shí),經(jīng)常會(huì)用到功能分解和復(fù)合兩種手段:
2025-04-29 03:59
【總結(jié)】高二文科黃興班函數(shù)部分專(zhuān)項(xiàng)練習(xí)12011-03-31抽象函數(shù)專(zhuān)題訓(xùn)練1線性函數(shù)型抽象函數(shù)【例題1】已知函數(shù)對(duì)任意實(shí)數(shù),均有,且當(dāng)時(shí),求在區(qū)間上的值域?!纠}2】已知函數(shù)對(duì)任意實(shí)數(shù),均有,且當(dāng)時(shí),求不等式的解。2指數(shù)函數(shù)型抽象函數(shù)【例題3】已
2025-07-23 11:20
【總結(jié)】抽象函數(shù)的對(duì)稱(chēng)性與周期性一、抽象函數(shù)的對(duì)稱(chēng)性性質(zhì)1若函數(shù)y=f(x)關(guān)于直線x=a軸對(duì)稱(chēng),則以下三個(gè)式子成立且等價(jià):(1)f(a+x)=f(a-x)(2)f(2a-x)=f(x)(3)f(2a+x)=f(-x)性質(zhì)2若函數(shù)y=f(x)關(guān)于點(diǎn)(a,0)中心對(duì)稱(chēng),則以下三個(gè)式子成立且等價(jià):(1)f(a+x)=-f(a-x)(2)f(2a-x)=-f(x)(3)f
2025-06-18 13:14
【總結(jié)】完美WORD格式抽象函數(shù)的定義域,求復(fù)合函數(shù)的定義域由復(fù)合函數(shù)的定義我們可知,要構(gòu)成復(fù)合函數(shù),則內(nèi)層函數(shù)的值域必須包含于外層函數(shù)的定義域之中,因此可得其方法為:若的定義域?yàn)?,求出中的解的范圍,即為的定義域。,求的定義域方法是:若的定義域?yàn)?,則由確定的范圍即為的定義域
2025-06-29 14:22
【總結(jié)】1.已知函數(shù)對(duì)任意,總有,且當(dāng)(1)求證在R上是減函數(shù)(2)求在[-3,3]上的最大值和最小值2.函數(shù)對(duì)任意,都有,并且當(dāng)(1)求證在R上是增函數(shù)(2)若3.4.(1)求(2)求證在定義域上是增函數(shù)(3)如果求滿足不等式的x的取值范圍(4)解不等式
【總結(jié)】...抽象函數(shù)專(zhuān)題訓(xùn)練1線性函數(shù)型抽象函數(shù)【例題1】已知函數(shù)對(duì)任意實(shí)數(shù),均有,且當(dāng)時(shí),求在區(qū)間上的值域?!纠}2】已知函數(shù)對(duì)任意實(shí)數(shù),均有,且當(dāng)時(shí),求不等式的解。2指數(shù)函數(shù)型抽象函數(shù)【例題3】已知函數(shù)定義域?yàn)镽,滿足條件:存在,使得對(duì)任何和
2025-08-05 18:07
【總結(jié)】 抽象函數(shù)模型化總結(jié) 高三數(shù)學(xué)總復(fù)習(xí)——抽象函數(shù)所謂抽象函數(shù),是指沒(méi)有明確給出函數(shù)表達(dá)式,只給出它具有的某些特征或性質(zhì),并用一種符號(hào)表示的函數(shù)。抽象來(lái)源于具體。抽象函數(shù)是由特殊的、具體的函數(shù)抽...
2024-11-20 03:15
【總結(jié)】2014高三數(shù)學(xué)專(zhuān)題抽象函數(shù)特殊模型和抽象函數(shù)特殊模型抽象函數(shù)正比例函數(shù)f(x)=kx(k≠0)f(x+y)=f(x)+f(y)冪函數(shù)f(x)=xnf(xy)=f(x)f(y)[或]指數(shù)函數(shù)f(x)=ax(a0且a≠1)f(x+y)=f(x)f(y)[對(duì)數(shù)函數(shù)f(x)=logax(a0且a≠1)f
2025-04-04 02:43
【總結(jié)】三角函數(shù)最值問(wèn)題的十種常見(jiàn)解法福州高級(jí)中學(xué)陳錦平三角函數(shù)是重要的數(shù)學(xué)運(yùn)算工具,三角函數(shù)最值問(wèn)題是三角函數(shù)中的基本內(nèi)容,,一方面應(yīng)充分利用三角函數(shù)自身的特殊性(如有界性等),另一方面還要注意將求解三角函數(shù)最值問(wèn)題轉(zhuǎn)化為求一些我們所熟知的函數(shù)(二次函數(shù)等):一.轉(zhuǎn)化一次函數(shù)在三角函數(shù)中,正弦函數(shù)與余弦函數(shù)具有一個(gè)最基本也是最重要的特征——有界性,利用正弦函數(shù)與余弦函數(shù)的有界
2025-03-24 05:42
【總結(jié)】 分段函數(shù)的幾種常見(jiàn)題型及解法分段函數(shù)是指自變量在兩個(gè)或兩個(gè)以上不同的范圍內(nèi),有不同的對(duì)應(yīng)法則的函數(shù),它是一個(gè)函數(shù),卻又常常被學(xué)生誤認(rèn)為是幾個(gè)函數(shù);它的定義域是各段函數(shù)定義域的并集,其值域也是各段函數(shù)值域的并集.由于它在理解和掌握函數(shù)的定義、函數(shù)的性質(zhì)等知識(shí)的程度的考察上有較好的作用,時(shí)常在高考試題中“閃亮”登場(chǎng),筆者就幾種具體的題型做了一些思考,解
2025-03-24 12:26
【總結(jié)】........二次函數(shù)與三角形的存在性問(wèn)題一、預(yù)備知識(shí)1、坐標(biāo)系中或拋物線上有兩個(gè)點(diǎn)為P(x1,y),Q(x2,y)(1)線段對(duì)稱(chēng)軸是直線(2)AB兩點(diǎn)之間距離公式:中點(diǎn)公式:已知兩點(diǎn),則線段
2025-03-24 06:24