【導(dǎo)讀】定積分的元素法是一種簡(jiǎn)單記憶定積分(??★1.求由曲線xy?所圍圖形的面積?!?.求在區(qū)間[0,?,(或D表達(dá)為Y-型:???????(若用X-型做,則第一象限內(nèi)所圍區(qū)域?★★★6.拋物線xy22?yx的面積為兩部分,求這兩部分的面積。y;又圖形關(guān)于x軸對(duì)稱,
【總結(jié)】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2025-08-11 16:42
【總結(jié)】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2025-08-21 12:42
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】第三節(jié)定積分的計(jì)算法第五章不定積分換元積分法分部積分法定積分?定積分的計(jì)算法第六章二、定積分的分部積分法一、定積分的換元積分法第三節(jié)一、定積分的換元積分法引例求橢圓12222??byax解114SS
2025-07-22 23:06
【總結(jié)】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第五十六講腳本編寫:教案制作:微分方程的基本概念上頁下頁鈴結(jié)束返回首頁設(shè)所求曲線的方程為y?y(x)?例1?一曲線通過點(diǎn)(1?2)?且在該曲線上任一點(diǎn)M(x
2025-04-29 12:05
【總結(jié)】多元函數(shù)的基本概念二元函數(shù)的概念二元函數(shù)的極限二元函數(shù)的連續(xù)性一元函數(shù)的概念一元函數(shù)的極限一元函數(shù)的連續(xù)性特別地特別地推廣推廣推廣一、平面點(diǎn)集二、二元函數(shù)的概念☆例☆例☆例三、二元函數(shù)的極限四、二元函數(shù)的連續(xù)性五、內(nèi)容
2025-02-21 16:23
【總結(jié)】習(xí)題6-11、設(shè)總體X的數(shù)學(xué)期望為?,X1,X1,…,Xn是來自X的一個(gè)樣本,12,,...naaa是任意常數(shù),驗(yàn)證:11nniiiiiaXa????(10niia???)是?的無偏估計(jì)量。解:111111()()(...)nnniiiiinnnii
2025-01-21 17:47
【總結(jié)】設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv?????,)(babauvdxuv???,??????bababadxvudxvuuv.?????bababavduuvud
2025-04-21 05:00
【總結(jié)】167。定積分與微積分基本定理一、選擇題1.與定積分∫3π01-cosxdx相等的是().A.2∫3π0sinx2dxB.2∫3π0??????sinx2dxC.??????2∫3π0sinx2dxD.以上結(jié)論都不對(duì)解析∵1-cosx=2sin2x2,∴∫3π01-cos
2025-01-09 00:22
【總結(jié)】隨機(jī)事件及其概率隨機(jī)事件習(xí)題1試說明隨機(jī)試驗(yàn)應(yīng)具有的三個(gè)特點(diǎn).習(xí)題2將一枚均勻的硬幣拋兩次,事件A,B,C分別表示“第一次出現(xiàn)正面”,“兩次出現(xiàn)同一面”,“至少有一次出現(xiàn)正面”,試寫出樣本空間及事件A,B,C中的樣本點(diǎn).隨機(jī)事件的概率古典概型與幾何概型
2025-01-14 17:09
【總結(jié)】第一章基本概念思考題1、如果容器中氣體壓力保持不變,那么壓力表的讀數(shù)一定也保持不變,對(duì)嗎?答:不對(duì)。因?yàn)閴毫Ρ淼淖x書取決于容器中氣體的壓力和壓力表所處環(huán)境的大氣壓力兩個(gè)因素。因此即使容器中的氣體壓力保持不變,當(dāng)大氣壓力變化時(shí),壓力表的讀數(shù)也會(huì)隨之變化,而不能保持不變。2、“平衡”和“均勻”有什么區(qū)別和聯(lián)系答:平衡(狀態(tài))值的是熱力系在沒有外界作用(意即
2025-06-18 13:02
【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【總結(jié)】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結(jié)】定積分與微積分基本定理 1.已知f(x)為偶函數(shù),且f(x)dx=8,則-6f(x)dx=( )A.0B.4C.8D.162.設(shè)f(x)=(其中e為自然對(duì)數(shù)的底數(shù)),則f(x)dx的值為( )A.B.2C.1D.3.若a=x2dx,b=x3dx,c=sinxdx,則a、b、c的大小關(guān)系是( )A.a(chǎn)
2025-08-05 05:47
【總結(jié)】第一章第十三節(jié)定積分與微積分基本定理(理)題組一定積分的計(jì)算(x)為偶函數(shù)且f(x)dx=8,則f(x)dx等于( )A.0B.4C.8D.16解析:原式=f(x)dx+f(x)dx,∵原函數(shù)為偶函數(shù),∴在y軸兩側(cè)的圖象對(duì)稱,∴對(duì)應(yīng)的面積相等,
2025-07-22 09:21