【導(dǎo)讀】A作一直線l,使它與兩坐標(biāo)軸相交且與兩坐標(biāo)軸所圍成的三角形面積為5.解:設(shè)直線為y+4=k(x+5),交x軸于點(diǎn),交y軸于點(diǎn),∴2x-5y-10=0或8x-5y+20=0為所求.由題意,知1-2k>0,kk12?)≥2,從而S≥4.
【總結(jié)】目標(biāo):..名稱幾何條件方程適用范圍復(fù)習(xí)回顧點(diǎn)點(diǎn)P(x0,y0)和斜率和斜率k點(diǎn)斜式點(diǎn)斜式斜截式斜截式兩點(diǎn)式兩點(diǎn)式截距式截距式斜率斜率k,y軸上的縱軸上的縱截距截距b在在x軸上的截距軸上的截距a,在在y軸上的截距軸上的截距bP1(x1,y1),P2
2025-06-06 07:48
【總結(jié)】直線的方程(三)——一般式【課時(shí)目標(biāo)】1.掌握直線方程的一般式.2.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式之間的關(guān)系.1.關(guān)于x,y的二元一次方程____________(其中A,B____________)叫做直線的一般式方程,簡(jiǎn)稱一般式.2.比較直線方程的五種形式形式方程局限各常
2024-12-05 10:20
【總結(jié)】解析幾何點(diǎn)到直線距離公式xyP0(x0,y0)O:0lAxByC???SR0022||AxByCdAB????Qd注意:化為一般式.圓的標(biāo)準(zhǔn)方程xyOCM(x,y)222)()(rbyax????圓心C(a
2024-11-17 19:47
【總結(jié)】直線與圓的位置關(guān)系備用習(xí)題m>0,則直線2(x+y)+1+m=0與圓x2+y2=m的位置關(guān)系為()分析:圓心到直線的距離為d=21m?,圓半徑為m.∵d-r=21m?-m=21(m-2m+1)=
2024-12-08 20:20
【總結(jié)】4.圓的一般方程[提出問題]已知圓心(2,3),半徑為2.問題1:寫出圓的標(biāo)準(zhǔn)方程.提示:(x-2)2+(y-3)2=4.問題2:上述方程能否化為二元二次方程的形式?問題3:方程x2+y2-4x-6y+13=0是否表示圓?問題4
2024-11-17 17:04
【總結(jié)】直線與圓的方程的應(yīng)用一、教材分析直線與圓的方程在生產(chǎn)、生活實(shí)踐以及數(shù)學(xué)中有著廣泛的應(yīng)用.本小節(jié)設(shè)置了一些例題,分別說明直線與圓的方程在實(shí)際生活中的應(yīng)用,以及用坐標(biāo)法研究幾何問題的基本思想及其解題過程.二、教學(xué)目標(biāo)1.知識(shí)與技能(1)理解掌握,直線與圓的方程在實(shí)際生活中的應(yīng)用.(2)會(huì)用“數(shù)形結(jié)合”的數(shù)學(xué)思想解
2024-12-08 20:19
【總結(jié)】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)圓的一般方程學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】1.在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心、半徑,掌握方程022?????FEyDxyx表示圓的條件.2.能通過配方等手段,把圓的一般方程化為圓的標(biāo)準(zhǔn)方程.能用待定系數(shù)法求圓的方程.【學(xué)習(xí)重
2024-12-05 06:44
【總結(jié)】第一篇:高中數(shù)學(xué)《直線的方程》教案8新人教A版必修2 直線的一般式方程 教學(xué)目標(biāo) (1)掌握直線方程的一般式Ax+By+C=0(A,B不同時(shí)為0)理解直線方程的一般式包含的兩方面的含義:①直線的...
2024-10-26 12:55
【總結(jié)】直線與方程(3)直線方程的一般式??0ykxbkb???化為截距式為1xybbk???;一般式為:0kxyb???2310xy???化為斜截式為2133xy???;化為截距式為11123xy??????1:00laxayaa????下列
2024-11-15 17:58
【總結(jié)】第三課時(shí)直線的一般式方程學(xué)習(xí)目標(biāo)1.掌握直線方程的一般式,掌握直線方程的各種形式之間的相互轉(zhuǎn)化,并能根據(jù)條件熟練地求出滿足已知條件的直線方程,提高學(xué)生分析、比較、概括、化歸的數(shù)學(xué)能力.2.獨(dú)立思考,合作探究,通過具體實(shí)例,學(xué)會(huì)直線方程的各種形式之間的相互轉(zhuǎn)化的方法.1.激情投入,全力以赴,在學(xué)習(xí)中發(fā)現(xiàn)“數(shù)”與“形”的
2024-11-19 16:12
【總結(jié)】點(diǎn)到直線的距離【問題設(shè)計(jì)】:①已知點(diǎn)P(x0,y0)和直線l:Ax+By+C=0,求點(diǎn)P到直線l的距離.你最容易想到的方法是什么?各種做法的優(yōu)缺點(diǎn)是什么?②前面我們是在A、B均不為零的假設(shè)下推導(dǎo)出公式的,若A、B中有一個(gè)為零,公式是否仍然成立?③回顧證明過程,同學(xué)們還有什么發(fā)現(xiàn)嗎?(如何求兩條平行線間的距離)【
2024-12-08 02:40
【總結(jié)】直線與圓的方程的應(yīng)用課題直線與圓的方程的應(yīng)用課型新授課學(xué)習(xí)目標(biāo)1.理解直線與圓的位置關(guān)系的集中性質(zhì)。2.利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;用坐標(biāo)法解決幾何問題的步驟;第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;
2024-12-08 02:39
【總結(jié)】220DxEyFyx??????教學(xué)目標(biāo):能將圓的一般方程化為圓的標(biāo)準(zhǔn)方程從而求出圓心的坐標(biāo)和半徑;能用待定系數(shù)法,由已知條件導(dǎo)出圓的方程.?教學(xué)重點(diǎn):(1)能用配方法,由圓的一般方程求出圓心坐標(biāo)和半徑;(2)能用待定系數(shù)法,由已知條件導(dǎo)出圓的方程.?教學(xué)難點(diǎn):圓的一般方程的特點(diǎn).?教學(xué)疑點(diǎn):圓的一般方程中要加限制條件.
2025-08-05 18:23
【總結(jié)】點(diǎn)、線、面典例解析平面的基本性質(zhì)與推論主要有:公理1、公理2和公理3、公理4及三個(gè)推論,它們是確定平面、判定直線或交線的基本依據(jù).為方便記憶,公理1可以簡(jiǎn)化成“兩點(diǎn)定線”,它是判定一條直線是否在某個(gè)平面內(nèi)的依據(jù)(只要在直線上找出兩個(gè)點(diǎn)在該平面內(nèi)即可);公理2可簡(jiǎn)化為“窺一點(diǎn)知全線”,它是尋找兩個(gè)平面交線的依據(jù);公理3可簡(jiǎn)化成“三點(diǎn)定面”(
2024-12-09 03:44
【總結(jié)】函數(shù)的概念活動(dòng)1問題1.請(qǐng)同學(xué)閱讀課本1516PP?的三個(gè)實(shí)例,并完成后面的問題:①一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距地面的高度為h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是h=130t-5t2.時(shí)間t的變化范圍是數(shù)集A={t|0≤t≤26},h的變化范圍是數(shù)集
2024-12-09 07:18