freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

新人教a版高中數(shù)學選修1-131變化率與導數(shù)2課時-資料下載頁

2024-12-08 01:51本頁面

【導讀】、思想和方法;正確理解導數(shù)的定義、幾何意義;納、總結形成數(shù)學概念的能力,體會數(shù)學知識在現(xiàn)實生活中的廣泛應用。[教學方法]講授啟發(fā),自學演練。2.怎樣求非勻速直線運動在某一時刻t0的速度?的時間t存在關系??ttth,那么我們就會計算任意一段的平??痰乃矔r速度,那么如何求運動員的瞬時速度呢?問題:1你能描述一下你算得的這些數(shù)據(jù)的變化規(guī)律嗎?關于這些數(shù)據(jù),下面的判斷對嗎?趨近于0時,即無論t從小于2的一邊,還是t從大于2的一邊趨近于2時,平均。3.靠近且比大的任何一個數(shù)都可以是某一段??5.表示在2秒附近,運動員的速度大約是sm/。t,接著觀察當t?于0時,上式趨近于一個確定的值,這個值就是運動員在2秒時的瞬時速度。述方便,我們用????趨近于0時,平均速度v有什么樣的變化趨勢?間隔無限變小時,平均速度v就無限趨近于史的瞬時速度,處的瞬時變化率是xxfxxfxf. 附注:①導數(shù)即為函數(shù)y=f在x=x0處的瞬時變化率;加熱,如果第xh時,原油的溫度為2()715fxxxx?????

  

【正文】 ??xf39。 =00 )()(lim)(lim00 xxxfxfxyxxxx ???????; ??xf39。 = x xfxxfx ????????)()(lim 000; 0x x x? ? ? ,當 0x??時, 0xx? ,所以 00 00( ) ( )( ) limxf x f xfx xx???? ? ? ③ 求函數(shù) ? ?xfy? 在 0xx? 處的導數(shù)步驟:“一差;二比;三極限” 。 [問題 3]求導數(shù)三步法 (即 ___變化率) 例 2.(課本例 1) 【 課前練習 】 自變量 x 從 0x 變到 1x 時,函數(shù)值的增量與相應自變量的增量之比是函數(shù)( ) A、在區(qū)間 [ 0x , 1x ]上的平均變化率 B、在 0x 處的變化率 C、在 1x 處的變化量 D、在區(qū)間 [0x , 1x ]上的導數(shù) 求 22 ??xy 在點 x=1 處的導數(shù) . 求函數(shù) xy? 在 1?x 處的導數(shù) [來 【 課后練習 】 已知函數(shù) )(xfy? ,下列說法錯誤的是( ) A、 )()( 00 xfxxfy ????? 叫函數(shù)增量 B、 x xfxxfxy ? ?????? )()( 00 叫函數(shù)在 [ xxx ??00, ]上的平均變化率 f(x1) )。()()1( 00 xfxxfy ?????求增量。)()()2( 00 x xfxxfxy ? ??????算比值時)(在求 0.)3( 0 ?????? ? xxyy xx C、 )(xf 在點 0x 處的導數(shù)記為 y? D、 )(xf 在點 0x 處的導數(shù)記為 )( 0xf? 若質(zhì)點 A按規(guī)律 22ts? 運動,則在 3?t 秒的瞬時速度為 ( ) A、 6 B、 18 C、 54 D、 81 設函數(shù) )(xf 可導,則x fxfx ? ????? 3 )1()1(lim0=( ) A、 )1(f? B、 )1(31f? C、不存在 D、以上都不對 函數(shù) xxy 1?? 在 1?x 處的導 數(shù)是 ______________ 已知自由下落物體的運動方程是 221gts? , (s 的單位是 m,t的單位是 s),求: ( 1)物體在 0t 到 tt ??0 這段時間內(nèi)的平均速度; ( 2)物體在 0t 時的瞬時速度; ( 3)物體在 0t =2s到 st ? 這段時間內(nèi)的平均速度; ( 4)物體在 st 2? 時的瞬時速度
點擊復制文檔內(nèi)容
教學課件相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1