freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

3的倍數(shù)的特征教學(xué)反思-資料下載頁

2024-10-28 21:08本頁面
  

【正文】 、2345……,這樣的數(shù)是3的倍數(shù)。師:那老師的這些數(shù):3350911522442屬于哪一類呢?生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數(shù)沒有超出這三類的。師:厲害!(讓其他學(xué)生說了兩個(gè)四位數(shù),用他的方法來判斷是不是3的倍數(shù),大概有三十個(gè)左右的學(xué)生能用這樣的方法分析。老師又舉了一個(gè)反例。)師:誰能用幾句話來概括?生6:一個(gè)數(shù),每個(gè)數(shù)位上的數(shù)字的和是9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是9,那么這個(gè)數(shù)就是3的倍數(shù)。師:真佩服你們!第二天,有學(xué)生告訴我他發(fā)現(xiàn)了一種更快判斷3的倍數(shù)的方法,不用把數(shù)位上的數(shù)都加起來,比如538,3是3的倍數(shù)就不要管它了,只要5加8加一下,13不是3的倍數(shù),538就不是3的倍數(shù)。我又說了一個(gè)五位數(shù)20xx,學(xué)生分析,6是3的倍數(shù),不去管它,2加7是9,9是3的倍數(shù),整個(gè)數(shù)就是3的倍數(shù)。學(xué)生的探究能力如此之強(qiáng),是我沒想到的,學(xué)生快速判斷3的倍數(shù)的方法,實(shí)際上已經(jīng)綜合了很多的知識,盡管不能很明確地用語言來表達(dá),但是,方法是完全正確的,其實(shí)這又是一個(gè)學(xué)生新的探究的開始。從本節(jié)課中,我有幾點(diǎn)小小的感悟:一、教師不要害怕學(xué)生探究的失敗。學(xué)生第一次探究的失敗,完全是正常的,這是他們運(yùn)用已有的經(jīng)驗(yàn),進(jìn)行探究后的結(jié)果。盡管這種經(jīng)驗(yàn)的遷移是負(fù)作用的,但是從失敗到成功的過程,記憶是深刻的。負(fù)遷移在教學(xué)中比比皆是,我們不但不能回避,而且要好好利用,要讓學(xué)生積累對數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),同時(shí)能將“經(jīng)驗(yàn)材料組織化”。二、教師要給學(xué)生創(chuàng)造探究的機(jī)會(huì)。學(xué)生的探究能力其實(shí)是老師意想不到的。最后一位學(xué)生對3的倍數(shù)的概括(一個(gè)數(shù),每個(gè)數(shù)位上的數(shù)字的和是9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是9,那么這個(gè)數(shù)就是3的倍數(shù)。),盡管實(shí)際的意義不是很大,但是它更具有橫向的關(guān)聯(lián),2的倍數(shù)特征是:個(gè)位是0、8的數(shù)是2的倍數(shù);5的倍數(shù)的特征是個(gè)位是0或5的數(shù)是5的倍數(shù)。或許,這種類比聯(lián)想更容易讓學(xué)生理解新的知識,更何況是學(xué)生自己探究出來的。其實(shí)很多教學(xué)內(nèi)容我們都可以讓學(xué)生進(jìn)行探究,關(guān)鍵是教師如何給學(xué)生提供一個(gè)探究的載體,一種探究的環(huán)境。三、教師對學(xué)過的知識要經(jīng)常地進(jìn)行整合。新教材的特點(diǎn)是有些知識點(diǎn)分得比較散,所以教師要經(jīng)常把學(xué)生學(xué)過的知識,在新知中不知不覺地再應(yīng)用,再鞏固。溫故而知新,在復(fù)習(xí)與鞏固中,學(xué)生會(huì)對舊知有更高的認(rèn)識,更深的理解,也容易排除學(xué)生對新知的畏難思想。同時(shí)要經(jīng)常地對各種知識進(jìn)行串聯(lián),編織學(xué)生知識的網(wǎng)絡(luò),使學(xué)生認(rèn)識到各種知識之間是相互關(guān)聯(lián)相互作用的,以利于學(xué)生解決一些實(shí)際問題或綜合性問題。四、教師要經(jīng)常在教學(xué)中滲透一些數(shù)學(xué)思想。分類是一種數(shù)學(xué)思想,同時(shí)也是一種數(shù)學(xué)思維的工具。人教版小學(xué)數(shù)學(xué)第一冊學(xué)生就接觸了分類《整理房間》,第七冊《角的分類》、第八冊《三角形的分類》,讓學(xué)生對分類有了更多的理解。其實(shí)在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級之間等等。對于分類的標(biāo)準(zhǔn),分類的原則,學(xué)生在不知不覺中有了感悟。借助分類,有40%的學(xué)生找到了3的倍數(shù)的特征,學(xué)生完全是在觀察、嘗試、驗(yàn)證的基礎(chǔ)上探究的,是自主的行為研究。在小學(xué)數(shù)學(xué)中,滲透了很多數(shù)學(xué)思想,如集合、對應(yīng)、假設(shè)、比較、類比、轉(zhuǎn)化、分類、統(tǒng)計(jì)思想等,在教學(xué)中合理地運(yùn)用這些數(shù)學(xué)思想,對學(xué)生學(xué)習(xí)數(shù)學(xué)的影響是深遠(yuǎn)的,也會(huì)讓我們的數(shù)學(xué)探究活動(dòng)更有意義,更有價(jià)值。3的倍數(shù)特征教學(xué)反思10《3的倍數(shù)的特征》,比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個(gè)位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——?jiǎng)邮衷囼?yàn)的過程中,概括歸納出了3的倍數(shù)特征。我從學(xué)生的已有認(rèn)知出發(fā),引導(dǎo)學(xué)生先進(jìn)行合理的猜想,進(jìn)而引發(fā)學(xué)生從不同的角度驗(yàn)證自己的猜想,通過驗(yàn)證,學(xué)生自我否定了自己的猜想。此時(shí)學(xué)生處于“不憤不啟”的最佳的學(xué)習(xí)狀態(tài),他們迫切想知道3的倍數(shù)的特征究竟是什么?這樣來調(diào)動(dòng)學(xué)生學(xué)習(xí)的欲望,增強(qiáng)學(xué)生主動(dòng)探究意識,有利于后面的探究學(xué)習(xí)。他們還認(rèn)為在我們實(shí)際生活中,當(dāng)你解決一個(gè)新問題時(shí),一般沒有人告訴你解決這個(gè)問題會(huì)碰到什么困難。你只有碰到問題后,在解決問題的過程中方才清楚還需要哪些知識,然后,你要在原來的知識庫中去提取并靈活地應(yīng)用原有的知識。新課堂呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯(cuò)的生成,學(xué)生總會(huì)出現(xiàn)各種各樣的錯(cuò)誤,我們的課堂教學(xué)不應(yīng)該有意識地去避免學(xué)生犯錯(cuò)誤。因?yàn)檎n堂是學(xué)生出錯(cuò)的地方,出錯(cuò)是學(xué)生的權(quán)利,學(xué)生的錯(cuò)誤是勞動(dòng)的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯(cuò)誤,有個(gè)教育專家說得好:“課堂上的錯(cuò)誤是教學(xué)的巨大財(cái)富”。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個(gè)出錯(cuò)的機(jī)會(huì)和權(quán)利。3的倍數(shù)特征教學(xué)反思115的倍數(shù)特征有共同之處,既都要關(guān)注個(gè)位上的數(shù)字。我在教學(xué)2的倍數(shù)特征時(shí)下功夫較多,由找倍數(shù)——觀察特征——驗(yàn)證發(fā)現(xiàn)——得出結(jié)論,每一環(huán)節(jié)都使學(xué)生明確活動(dòng)目的,找到學(xué)習(xí)方法。再到5的倍數(shù)特征時(shí),何不由扶到放,充分發(fā)揮學(xué)生的自主能力性呢?因此,我完全放手,給學(xué)生以充分的時(shí)間和空間,讓他們在觀察、探索中體驗(yàn)成功的喜悅。在教學(xué)既是2又是5的倍數(shù)的特征時(shí),我沒有讓學(xué)生通過做課本上的習(xí)題總結(jié)結(jié)論,而是通過讓學(xué)生說自己的學(xué)號,誰是2的倍數(shù),誰是5的倍數(shù),然后自然的追問一句:“為什么有的同學(xué)舉了兩次手?”全體學(xué)生幡然醒悟,原來這幾個(gè)同學(xué)的學(xué)號既是2,又是5的倍數(shù),很自然的找到了既是2又是5的倍數(shù)的特征,我感覺這一個(gè)環(huán)節(jié)的設(shè)計(jì)非常自然,貼近學(xué)生實(shí)際。這是我認(rèn)為比較成功的地方。3的倍數(shù)特征教學(xué)反思123的倍數(shù)特征是分為兩節(jié)課完成的,上完后,給我最大的感受,學(xué)生對5的倍數(shù)的特征不難理解,對偶數(shù)和奇數(shù)的概念也容易掌握,5的倍數(shù)的特征這節(jié)課,概念比較多,學(xué)生很容易混淆。怎樣才能把抽象的概念轉(zhuǎn)化為形象直觀的知識讓學(xué)生們接受呢?一、互動(dòng)、質(zhì)疑,激發(fā)學(xué)生的探究興趣。好的開始等于成功了一半。課伊始,我便說:“老師不用計(jì)算,就能很快判斷一個(gè)數(shù)是不是2或5的倍數(shù),你們相信嗎?”學(xué)生自然不相信,爭先恐后地來考老師,結(jié)果不得而知。幾輪過后,看到他們還是不服氣的樣子,我故作神秘說:“其實(shí),是老師知道一個(gè)秘訣。你們想知道是什么嗎?”由此引出課題。這樣大大的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,激發(fā)了其探究的欲望。二、鼓勵(lì)學(xué)生獨(dú)立思考,經(jīng)歷猜測驗(yàn)證的過程。數(shù)學(xué)學(xué)習(xí)過程中充滿了觀察、實(shí)驗(yàn)、推斷等探索性與挑戰(zhàn)性活動(dòng)。由于5的倍數(shù)的特征比較容易發(fā)現(xiàn),我便把它調(diào)到2的倍數(shù)的特征前面來進(jìn)行教學(xué)。首先讓學(xué)生獨(dú)立寫出100以內(nèi)5的倍數(shù),獨(dú)立觀察,看看你有什么發(fā)現(xiàn)?學(xué)生很容易發(fā)現(xiàn)“個(gè)位上是0或5的數(shù)是5的倍數(shù)。”而這只是猜測,結(jié)論還需要進(jìn)一步的驗(yàn)證。我們不能滿足于學(xué)生能夠得到結(jié)論就夠了,而應(yīng)該抱著科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,引導(dǎo)學(xué)生認(rèn)識到這個(gè)結(jié)論僅僅適用于1—100這個(gè)小范圍。是不是在所有不等于0的自然數(shù)中都適用呢?還需要研究。在老師的引導(dǎo)下,學(xué)生開始認(rèn)識到還要繼續(xù)拓展范圍,研究大于100的自然數(shù)中所有5的倍數(shù)是不是也是個(gè)位上的數(shù)字是5或0。在這一過程中,學(xué)生感受到了科學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度,知道了在進(jìn)行一項(xiàng)數(shù)目巨大的研究過程中,可以從小范圍入手,得到一定的猜想,然后逐漸擴(kuò)范圍大,最后得出科學(xué)的結(jié)論。這樣,當(dāng)下節(jié)課研究3的倍數(shù)的特征時(shí),學(xué)生就會(huì)大膽猜想,并有方法來驗(yàn)證自己的猜想了。三、小組合作,發(fā)揮團(tuán)體的作用動(dòng)手實(shí)踐、合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。與5的倍數(shù)特征相比較,2的倍數(shù)特征稍顯困難,所以我組織學(xué)生利用小組合作的方式,根據(jù)探究5的倍數(shù)的特征的思路,小組合作探究2的倍數(shù)的特征。經(jīng)過這樣的合作討論,大多數(shù)小組能夠得到正確或接近正確的答案。突出了學(xué)生的主體地位,讓他們在充分的探索活動(dòng)中充分發(fā)現(xiàn)規(guī)律、舉例驗(yàn)證、總結(jié)歸納。3的倍數(shù)的特征教學(xué)反思四:課上完了,整體來說感覺良好。學(xué)生的主體作用在這節(jié)課中得到了充分的發(fā)揮,積極的思維、熱烈的氣氛等均給人以很大的感染,仔細(xì)分析,我認(rèn)為這節(jié)課課的成功得益于以下幾方面:,它們在知識體系中是一個(gè)整體,而在特征和判斷方法上有各自不同,這使得學(xué)生的學(xué)習(xí)過程始終處在“產(chǎn)生沖突解決沖突”的過程中,為學(xué)生的積極探索提供了較大的空間,也為每個(gè)學(xué)生在不同水平上參與學(xué)習(xí)提供了可能。例如,在探索能被3整除的數(shù)的特征時(shí),有的學(xué)生提出“個(gè)位上是3的倍數(shù)”有的學(xué)生提出“某一位上的數(shù)是3的倍數(shù)”。而水平較高的學(xué)生提出:“各個(gè)數(shù)位上的數(shù)字之和是3的倍數(shù)”。在這樣一個(gè)探索過程中學(xué)生的主動(dòng)性和創(chuàng)造性得到了發(fā)揮。這是我認(rèn)為比較成功的地方。3的倍數(shù)特征教學(xué)反思13【初次實(shí)踐】課始,讓學(xué)生任意報(bào)數(shù),師生比賽誰先判斷出這個(gè)數(shù)是不是3的倍數(shù),正當(dāng)我沉浸在游戲的情境之中,幾個(gè)“不識時(shí)務(wù)者”打亂了課前的預(yù)想?!袄蠋?,我知道其中的秘密,只要把各個(gè)數(shù)位上的數(shù)加起來,看看是不是3的倍數(shù)就行了!”“對!在數(shù)學(xué)書上就有這句話?!薄钟袔讉€(gè)學(xué)生偷偷地打開了數(shù)學(xué)書?!霸趺崔k?”謎底都被學(xué)生揭開了。面對這一生成,我沒有死守教案,而是果斷地調(diào)整了預(yù)設(shè),變“探索”為“驗(yàn)證”,將結(jié)論板書在黑板上,讓學(xué)生理解這句話的意思,然后組織學(xué)生將百數(shù)表中3的倍數(shù)圈出來,驗(yàn)證是不是具有這樣的特征,最后進(jìn)行一系列鞏固練習(xí)……[反思]課堂上經(jīng)常會(huì)出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識和盤托出。我們的習(xí)慣做法就是變“探索”為“驗(yàn)證”,當(dāng)然有些知識的教學(xué)采用這種方式是有效的,然而本課中“驗(yàn)證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎?僅僅舉幾個(gè)例子試一試,驗(yàn)證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計(jì)算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學(xué)生已有的知識經(jīng)驗(yàn),而且在已經(jīng)揭開“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實(shí)驗(yàn)、發(fā)現(xiàn),體驗(yàn)遭受挫折后取得成功的那種激動(dòng),也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢?【再次實(shí)踐】(與第一次教學(xué)情況基本相同,有些學(xué)生能夠正確地判斷一個(gè)數(shù)是不是3的倍數(shù),這時(shí)一些學(xué)生卻依然感到困惑,我設(shè)法將這一困惑激發(fā)出來。)師:同學(xué)們真能干,這么快就知道了3的倍數(shù)的特征,上節(jié)課我們學(xué)習(xí)了5的倍數(shù)的特征只和什么有關(guān)?生:只和一個(gè)數(shù)的個(gè)位有關(guān)。師:與今天學(xué)習(xí)的知識比較一下,你有什么疑問嗎?生1:為什么判斷一個(gè)數(shù)是不是3的倍數(shù)只看個(gè)位不行?生2:為什么判斷一個(gè)數(shù)是不是5的倍數(shù)只看個(gè)位,而判斷是不是3的倍數(shù)要看各位上數(shù)的和?……師:同學(xué)們思考問題確實(shí)比較深入,提出了非常有研究價(jià)值的問題。那我們先來研究一下5的倍數(shù)為什么只和它的個(gè)位有關(guān)。(學(xué)生嘗試探索,教師適時(shí)引導(dǎo)學(xué)生從簡單數(shù)開始研究,借助小棒或其他方法進(jìn)行解釋。)生1:我在擺小棒時(shí)發(fā)現(xiàn),十位上擺幾就是幾十,它肯定是5的倍數(shù),因此只要看個(gè)位擺幾就可以了。生2:其實(shí)不用擺小棒也可以,我們組發(fā)現(xiàn)每個(gè)數(shù)都可以拆成一個(gè)整十?dāng)?shù)加個(gè)位數(shù),整十?dāng)?shù)當(dāng)然都是5的倍數(shù),所以這個(gè)數(shù)的個(gè)位是幾就決定了它是否是5的倍數(shù)。師:同學(xué)們想到用“拆數(shù)”的方法來研究,是個(gè)好辦法。生3:是否是3的倍數(shù)只看個(gè)位就不行了。比如13,雖然個(gè)位上是3的倍數(shù),但10卻不是3的倍數(shù);12雖然個(gè)位不是3的倍數(shù),但12 = 10 + 2 = 9 + 1 + 2 = 9 + 3,因此只要看十位上余下的數(shù)和個(gè)位上的數(shù)合起來是不是3的倍數(shù)就行了。生4:我也是這樣想的,我還發(fā)現(xiàn)十位上余下的數(shù)正好和十位上的數(shù)字一樣。生5:(面帶困惑)起初,我也是這樣想的,可是在試三十幾、四十幾時(shí)就不行了。余下的數(shù)和十位上的數(shù)不一樣了,比如40除以3只余1,余下的數(shù)就和十位數(shù)字不同。生(部分):對。生4:其實(shí)40不要拆成39和1,你拆成36和4,余下的數(shù)不就和十位數(shù)字相同了嗎?生6:也就是說整十?dāng)?shù)都可以拆成十位上的數(shù)字和一個(gè)3的倍數(shù)的數(shù)。這樣只要看十位上的數(shù)和個(gè)位上的和是不是3的倍數(shù)就可以了。師:同學(xué)們確實(shí)很厲害!那三位數(shù)、四位數(shù)是不是也有這樣的規(guī)律呢?學(xué)生用“拆數(shù)”的方法繼續(xù)研究三、四位數(shù),發(fā)現(xiàn)和兩位數(shù)一樣,只不過千位、百位上余下的數(shù)要依次加到下一位上進(jìn)行研究。3的倍數(shù)的特征在學(xué)生頭腦中越來越清晰。師:同學(xué)們通過自己的探索,你們不僅發(fā)現(xiàn)了3的倍數(shù)的特征,還弄清了為什么有這樣的特征?,F(xiàn)在你還有哪些新的探索想法呢?生1:我想知道4的倍數(shù)有什么特征?生2:我知道,應(yīng)該只要看末兩位就行了,因?yàn)檎佟⒄?shù)一定都是4的倍數(shù)。師:你能把學(xué)到的方法及時(shí)應(yīng)用,非常棒!生3:7或9的倍數(shù)有什么特征呢?……師:同學(xué)們又提出了一些新的、非常有價(jià)值的問題,課后可以繼續(xù)進(jìn)行探索。[反思]1. 找準(zhǔn)知識間的沖突,激發(fā)探究的愿望。學(xué)生剛剛學(xué)習(xí)了5的倍數(shù)的特征,知道只要看一個(gè)數(shù)的個(gè)位,因此在學(xué)習(xí)3的倍數(shù)的特征時(shí),自然會(huì)把“看個(gè)位”這一方法遷移過來。而實(shí)際上,3的倍數(shù)的特征,卻要把各個(gè)位上的數(shù)加起來研究。于是新舊知識之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個(gè)位?”“為什么3的倍數(shù)要把各個(gè)位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會(huì)自覺地進(jìn)入到自主探究的狀態(tài)之中。知識不是孤立的,新舊知識有時(shí)會(huì)存在矛盾沖突,教師如能找準(zhǔn)知識間的沖突并巧妙激發(fā)出來,就能激起學(xué)生探究的愿望。這樣不僅有利于學(xué)生對新知的掌握,有效地將新知納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。2. 激活學(xué)習(xí)中的困惑,讓探究走向深入。創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對于3的倍數(shù)的特征理解并不透徹,探索的體驗(yàn)也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時(shí)空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識的對比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到
點(diǎn)擊復(fù)制文檔內(nèi)容
化學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1