【總結(jié)】第一篇:一題多解之利用導(dǎo)數(shù)證明不等式問(wèn)題 一題多解之利用導(dǎo)數(shù)證明不等式問(wèn)題 構(gòu)造函數(shù)證明不等式的方法: (1)對(duì)于(或可化為)左右兩邊結(jié)構(gòu)相同的不等式,構(gòu)造函數(shù)f(x),使原不等式成為形如f(a...
2024-10-29 14:44
【總結(jié)】第一篇:例談利用導(dǎo)數(shù)證明不等式的方法 例談利用導(dǎo)數(shù)證明不等式的方法 廣東肇慶中學(xué)張本龍 【內(nèi)容摘要】導(dǎo)數(shù)作為工具是一道靚麗的風(fēng)景線,也是近幾年高考的一個(gè)新熱點(diǎn),在某些不等式的證明中,若能及時(shí)地構(gòu)...
2024-10-27 14:17
【總結(jié)】第一篇:導(dǎo)數(shù)證明不等式的幾個(gè)方法 導(dǎo)數(shù)證明不等式的幾個(gè)方法 1、直接利用題目所給函數(shù)證明(高考大題一般沒(méi)有這么直接)已知函數(shù)f(x)=ln(x+1)-x,求證:當(dāng)x-1時(shí),恒有 1-1£ln(...
2024-10-28 01:40
【總結(jié)】利用導(dǎo)數(shù)證明不等式的常見(jiàn)題型及解題技巧趣題引入已知函數(shù)設(shè),證明:分析:主要考查利用導(dǎo)數(shù)證明不等式的能力。證明:,設(shè)當(dāng)時(shí),當(dāng)時(shí),即在上為減函數(shù),在上為增函數(shù)∴,又∴,即設(shè)當(dāng)時(shí),,因此在區(qū)間上為減函數(shù);因?yàn)?,又∴,即故綜上可知,當(dāng)時(shí),本題在設(shè)輔助函數(shù)時(shí),考慮到不等式涉及的變量是區(qū)間的兩個(gè)端點(diǎn),因此,設(shè)輔助
2025-03-24 12:45
【總結(jié)】利用導(dǎo)數(shù)證明不等式的兩種通法吉林省長(zhǎng)春市東北師范大學(xué)附屬實(shí)驗(yàn)學(xué)校金鐘植岳海學(xué)利用導(dǎo)數(shù)證明不等式是高考中的一個(gè)熱點(diǎn)問(wèn)題,利用導(dǎo)數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關(guān)的兩種通法用列舉的方式歸納和總結(jié)。一、函數(shù)類不等式證明函數(shù)類不等式證明的通法可概括為:證明不等式()的問(wèn)題轉(zhuǎn)化為證明(),進(jìn)而構(gòu)造輔助函數(shù),然后利用導(dǎo)數(shù)證明函數(shù)的單調(diào)
2025-06-20 06:49
【總結(jié)】利用導(dǎo)數(shù)證明不等式不等式的證明問(wèn)題是中學(xué)數(shù)學(xué)教學(xué)的一個(gè)難點(diǎn),傳統(tǒng)證明不等式的方法技巧性強(qiáng),多數(shù)學(xué)生不易想到,,這為我們處理不等式的證明問(wèn)題又提供了一條新的途徑,并且在近年高考題中使用導(dǎo)數(shù)證明不等式也時(shí)有出現(xiàn),但現(xiàn)行教材對(duì)這一問(wèn)題沒(méi)有展開(kāi)研究,,方法簡(jiǎn)捷,操作性強(qiáng),易被學(xué)生掌握。下面介紹利用單調(diào)性、極值、最值證明不等式的
2024-07-29 11:49
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對(duì)稱性)abba???(2)
2025-01-20 01:36
2024-08-02 19:51
【總結(jié)】......導(dǎo)數(shù)題型一:證明不等式不等式的證明問(wèn)題是中學(xué)數(shù)學(xué)教學(xué)的一個(gè)難點(diǎn),傳統(tǒng)證明不等式的方法技巧性強(qiáng),多數(shù)學(xué)生不易想到,,這為我們處理不等式的證明問(wèn)題又提供了一條新的途徑,并且在近年高考題中使用導(dǎo)數(shù)證明不等式也時(shí)有出現(xiàn),但現(xiàn)行教材對(duì)這一問(wèn)
2025-03-25 00:40
【總結(jié)】數(shù)列與不等式的綜合問(wèn)題 測(cè)試時(shí)間:120分鐘 滿分:150分解答題(本題共9小題,共150分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)1.[2016·銀川一模](本小題滿分15分)在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q(q≠1),且b2+S2=12,q=.(1)求an與bn;(2)證明:≤++…+&
2025-03-25 02:51
【總結(jié)】第一篇:導(dǎo)數(shù)在不等式證明中的應(yīng)用 龍?jiān)雌诳W(wǎng)://. 導(dǎo)數(shù)在不等式證明中的應(yīng)用 作者:唐力張歡 來(lái)源:《考試周刊》2013年第09期 摘要:中學(xué)不等式證明,只能用原始的方法,很多證明需要較高...
2024-10-31 05:20
【總結(jié)】專題導(dǎo)數(shù)與不等式的解題技巧一.知識(shí)點(diǎn)基本初等函數(shù)的導(dǎo)數(shù)公式()常用函數(shù)的導(dǎo)數(shù)①()′=(為常數(shù));②()′=;③()′=;④′=;⑤()′=.()初等函數(shù)的導(dǎo)數(shù)公式①()′=;②()′=;③()′=;④()′=;⑤()′=;⑥()′=;⑦()′=..導(dǎo)數(shù)的運(yùn)算法則()[()±()]′=;()[(
2025-03-24 05:51
【總結(jié)】2022年春人教版數(shù)學(xué)七年級(jí)下冊(cè)課件第九章不等式與不等式組不等式的性質(zhì)第2課時(shí)利用不等式的性質(zhì)解不等式第九章不等式與不等式組不等式知識(shí)管理學(xué)習(xí)指南歸類探究當(dāng)堂測(cè)評(píng)分層作業(yè)不等式的性質(zhì)第2課時(shí)利用不等式
2025-06-19 12:14
【總結(jié)】第一篇:構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)證明不等式 構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)證明不等式 摘要:運(yùn)用導(dǎo)數(shù)法證明不等式首先要構(gòu)建函數(shù),以函數(shù)作為載體可以用移項(xiàng)作差,直接構(gòu)造;合理變形,等價(jià)構(gòu)造;分析(條件)結(jié)論,特征構(gòu)造...
2024-10-28 05:32
【總結(jié)】第一篇:57均值不等式與不等式的實(shí)際應(yīng)用 學(xué)案五十七:均值不等式與不等式的實(shí)際應(yīng)用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過(guò)程 2、會(huì)用均值不等式解決簡(jiǎn)單的最大(?。┲?..
2024-11-03 14:01