【總結(jié)】第一篇:利用導(dǎo)數(shù)證明不等式的常見題型經(jīng)典 利用導(dǎo)數(shù)證明不等式的常見題型及解題技巧 技巧精髓 1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再由單調(diào)性來(lái)證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個(gè)難點(diǎn),也是近幾年高...
2024-10-27 18:01
【總結(jié)】第一篇:導(dǎo)數(shù)與數(shù)列不等式的綜合證明問(wèn)題 導(dǎo)數(shù)與數(shù)列不等式的綜合證明問(wèn)題 典例:(2017全國(guó)卷3,21)已知函數(shù)f(x)=x-1-alnx。(1)若f(x)30,求a的值; (2)設(shè)m為整數(shù),且...
2024-10-28 18:52
【總結(jié)】第一篇:用導(dǎo)數(shù)證明不等式 用導(dǎo)數(shù)證明不等式 最基本的方法就是將不等式的的一邊移到另一邊,然后將這個(gè)式子令為一個(gè)函數(shù)f(x).對(duì)這個(gè)函數(shù)求導(dǎo),判斷這個(gè)函數(shù)這各個(gè)區(qū)間的單調(diào)性,然后證明其最大值(或者是...
2024-10-31 18:37
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】導(dǎo)數(shù)大題中不等式的證明1.使用前面結(jié)論求證(主要),有三種:,。1、設(shè)函數(shù)(為自然對(duì)數(shù)的底數(shù)),().(1)證明:;(2)當(dāng)時(shí),比較與的大小,并說(shuō)明理由;(3)證明:().2、已知函數(shù).(1)求在上的最大值;(2)若直線為曲線的切線,求實(shí)數(shù)的值;(3)當(dāng)時(shí),設(shè),且,若不等式恒成立,求實(shí)數(shù)的最小值.
2025-03-25 00:40
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對(duì)稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結(jié)】第一篇:4函數(shù)思想在不等式證明中的應(yīng)用 不等式證明中的函數(shù)思想 函數(shù)思想在不等式問(wèn)題中有著廣泛的應(yīng)用,在證明不等式時(shí),先認(rèn)真觀察不等式的結(jié)構(gòu)特征,或者經(jīng)過(guò)適當(dāng)?shù)淖冃魏笤儆^察,然后構(gòu)造出一個(gè)與該不等...
2024-11-05 06:28
【總結(jié)】第一篇:9導(dǎo)數(shù)情境下的不等式證明2 導(dǎo)數(shù)情境下的不等式證明21、已知函數(shù)g(x)=xlnx,設(shè)0 x2且x1?[-1,0],x2?[1,2]. 2、設(shè)函數(shù)f(x)=x+3bx+3cx有兩個(gè)極...
2024-10-29 11:20
【總結(jié)】13屆 分類號(hào): 單位代碼:10452畢業(yè)論文(設(shè)計(jì))微積分在積分不等式證明中的應(yīng)用 2022年3月20日臨沂大學(xué)2022屆本科畢業(yè)論文(設(shè)計(jì))摘要不等式是數(shù)學(xué)研究的一個(gè)基本問(wèn)題,知函數(shù)積分的不等式
2025-08-22 22:57
【總結(jié)】第一篇:不等式的證明 學(xué)習(xí)資料 教學(xué)目標(biāo) (1)理解證明不等式的三種方法:比較法、綜合法和分析法的意義; (2)掌握用比較法、綜合法和分析法來(lái)證簡(jiǎn)單的不等式; (3)能靈活根據(jù)題目選擇適當(dāng)?shù)?..
2024-10-28 23:51
【總結(jié)】第一篇:導(dǎo)數(shù)的應(yīng)用4——構(gòu)造函數(shù)證明數(shù)列不等式例題 導(dǎo)數(shù)的應(yīng)用 (四)——構(gòu)造函數(shù)證明數(shù)列不等式 例1(選講或練習(xí)):求證1111+++…+ln(1+n)234n+1 例2.已知函數(shù)f(x)...
2024-10-26 14:31
【總結(jié)】第一篇:不等式的證明 復(fù)習(xí)課:不等式的證明 教學(xué)目標(biāo) (1).理解絕對(duì)值的幾何意義并能用其證明不等式和解絕對(duì)值不等式.(2).了解數(shù)學(xué)歸納法的使用原理.(3).會(huì)用數(shù)學(xué)歸納法證明一些簡(jiǎn)單問(wèn)題...
2024-11-08 22:00
【總結(jié)】第一篇:不等式證明 不等式證明 : 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b0 ab;a-b=0 a=b;a-b a...
2024-10-29 11:38
【總結(jié)】第一篇:不等式證明 不等式的證明 比較法證明不等式 a2-b2a-bb0,求證:+b2a+b 2.(本小題滿分10分)選修4—5:不等式選講 (1)已知x、y都是正實(shí)數(shù),求證:x3+y...
2024-11-14 12:00