【總結(jié)】利用導(dǎo)數(shù)證明不等式不等式的證明問題是中學(xué)數(shù)學(xué)教學(xué)的一個(gè)難點(diǎn),傳統(tǒng)證明不等式的方法技巧性強(qiáng),多數(shù)學(xué)生不易想到,,這為我們處理不等式的證明問題又提供了一條新的途徑,并且在近年高考題中使用導(dǎo)數(shù)證明不等式也時(shí)有出現(xiàn),但現(xiàn)行教材對這一問題沒有展開研究,,方法簡捷,操作性強(qiáng),易被學(xué)生掌握。下面介紹利用單調(diào)性、極值、最值證明不等式的
2025-07-20 11:49
【總結(jié)】第一篇:導(dǎo)數(shù)證明不等式的幾個(gè)方法 導(dǎo)數(shù)證明不等式的幾個(gè)方法 1、直接利用題目所給函數(shù)證明(高考大題一般沒有這么直接)已知函數(shù)f(x)=ln(x+1)-x,求證:當(dāng)x-1時(shí),恒有 1-1£ln(...
2025-10-19 01:40
【總結(jié)】第一篇:構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)證明不等式 構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)證明不等式 摘要:運(yùn)用導(dǎo)數(shù)法證明不等式首先要構(gòu)建函數(shù),以函數(shù)作為載體可以用移項(xiàng)作差,直接構(gòu)造;合理變形,等價(jià)構(gòu)造;分析(條件)結(jié)論,特征構(gòu)造...
2025-10-19 05:32
【總結(jié)】第一篇:例談利用導(dǎo)數(shù)證明不等式的方法 例談利用導(dǎo)數(shù)證明不等式的方法 廣東肇慶中學(xué)張本龍 【內(nèi)容摘要】導(dǎo)數(shù)作為工具是一道靚麗的風(fēng)景線,也是近幾年高考的一個(gè)新熱點(diǎn),在某些不等式的證明中,若能及時(shí)地構(gòu)...
2025-10-18 14:17
【總結(jié)】第一篇:數(shù)學(xué)利用導(dǎo)數(shù)證明不等式的常見題型及解題技巧 利用導(dǎo)數(shù)證明不等式的常見題型及解題技巧 趣題引入 已知函數(shù)g(x)=xlnx設(shè)0ab,證明:0g(a)+g(b)-2(a+b 2)(...
2024-10-31 12:18
【總結(jié)】利用導(dǎo)數(shù)證明不等式的常見題型及解題技巧趣題引入已知函數(shù)設(shè),證明:分析:主要考查利用導(dǎo)數(shù)證明不等式的能力。證明:,設(shè)當(dāng)時(shí),當(dāng)時(shí),即在上為減函數(shù),在上為增函數(shù)∴,又∴,即設(shè)當(dāng)時(shí),,因此在區(qū)間上為減函數(shù);因?yàn)?,又∴,即故綜上可知,當(dāng)時(shí),本題在設(shè)輔助函數(shù)時(shí),考慮到不等式涉及的變量是區(qū)間的兩個(gè)端點(diǎn),因此,設(shè)輔助
2025-03-24 12:45
【總結(jié)】 本文檔一共給出了23道數(shù)式、方程、函數(shù)、不等式、 導(dǎo)數(shù)題目,每道題目至少2種解法,一共有59個(gè)解法。 題目有層次,有教材基礎(chǔ)題,有高考題和模擬題, 自主招生題和競賽題,適合不同程度的...
2025-04-05 05:33
【總結(jié)】利用導(dǎo)數(shù)證明不等式的兩種通法吉林省長春市東北師范大學(xué)附屬實(shí)驗(yàn)學(xué)校金鐘植岳海學(xué)利用導(dǎo)數(shù)證明不等式是高考中的一個(gè)熱點(diǎn)問題,利用導(dǎo)數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關(guān)的兩種通法用列舉的方式歸納和總結(jié)。一、函數(shù)類不等式證明函數(shù)類不等式證明的通法可概括為:證明不等式()的問題轉(zhuǎn)化為證明(),進(jìn)而構(gòu)造輔助函數(shù),然后利用導(dǎo)數(shù)證明函數(shù)的單調(diào)
2025-06-20 06:49
【總結(jié)】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【總結(jié)】第一篇:導(dǎo)數(shù)在不等式證明中的應(yīng)用 龍?jiān)雌诳W(wǎng)://. 導(dǎo)數(shù)在不等式證明中的應(yīng)用 作者:唐力張歡 來源:《考試周刊》2013年第09期 摘要:中學(xué)不等式證明,只能用原始的方法,很多證明需要較高...
2024-10-31 05:20
【總結(jié)】第一篇:數(shù)列----利用函數(shù)證明數(shù)列不等式 數(shù)列已知數(shù)列{an}的前n項(xiàng)和為Sn,且a2an=S2+Sn對一切正整數(shù)n都成立。(Ⅰ)求a1,a2的值;(Ⅱ)設(shè)a10,數(shù)列{lg大值。 2已知數(shù)列...
2025-10-19 03:31
【總結(jié)】第一篇:利用放縮法證明不等式舉例 利用放縮法證明不等式舉例 高考中利用放縮方法證明不等式,文科涉及較少,但理科卻常常出現(xiàn),且多是在壓軸題中出現(xiàn)。放縮法證明不等式有法可依,但具體到題,又常常沒有定法...
2025-10-18 12:24
【總結(jié)】利用放縮法證明數(shù)列型不等式壓軸題摘要:縱觀近幾年高考數(shù)學(xué)卷,壓軸題很多是數(shù)列型不等式,其中通常需要證明數(shù)列型不等式,它不但可以考查證明不等式和數(shù)列的各種方法,而且還可以綜合考查其它多種數(shù)學(xué)思想方法,充分體現(xiàn)了能力立意的高考命題原則。處理數(shù)列型不等式最重要要的方法為放縮法。放縮法的本質(zhì)是基于最初等的四則運(yùn)算,利用不等式的傳遞性,其優(yōu)點(diǎn)是能迅速地化繁為簡,化難為易,達(dá)到事半功倍的效
【總結(jié)】第一篇:導(dǎo)數(shù)與不等式證明(絕對精華) 二輪專題 (十一)導(dǎo)數(shù)與不等式證明 【學(xué)習(xí)目標(biāo)】 .【知識回顧】一級排查:應(yīng)知應(yīng)會 ,利用新函數(shù)的單調(diào)性或最值解決不等式的證明問題.比如要證明對任意x?...
2024-10-31 05:11
【總結(jié)】已知函數(shù).(I)討論的單調(diào)性;(II)設(shè),證明:當(dāng)時(shí),;(III)若函數(shù)的圖像與軸交于兩點(diǎn),線段中點(diǎn)的橫坐標(biāo)為,證明:.命題說明:一、命題來源:個(gè)人原創(chuàng)二、主要考查以下幾方面內(nèi)容:(1)考查求導(dǎo)公式(包括形如的復(fù)合函數(shù)求導(dǎo))及導(dǎo)數(shù)運(yùn)算法則;(2)考查對數(shù)的運(yùn)算性質(zhì);(3)導(dǎo)數(shù)法判斷函數(shù)的單調(diào)性;(4)考查用構(gòu)造函數(shù)的方法證明不等式;(5)考查分類討論、數(shù)形結(jié)合、轉(zhuǎn)
2025-07-25 01:53