【總結(jié)】第一篇:用放縮法證明數(shù)列求和中的不等式 用放縮法證明數(shù)列求和中的不等式 近幾年,高考試題常把數(shù)列與不等式的綜合題作為壓軸題,而壓軸題的最后一問(wèn)又重點(diǎn)考查用放縮法證明不等式,這類試題技巧性強(qiáng),難度大...
2024-10-28 05:08
【總結(jié)】第一篇:論文-放縮法證明數(shù)列不等式的基本策略 放縮法證明數(shù)列不等式的基本策略 廣外外校姜海濤 放縮法證明數(shù)列不等式是高考數(shù)學(xué)命題的熱點(diǎn)和難點(diǎn)。所謂放縮法就是利用不等式的傳遞性,對(duì)不等式的局部進(jìn)行...
2024-10-29 07:26
【總結(jié)】第一篇:導(dǎo)數(shù)的應(yīng)用4——構(gòu)造函數(shù)證明數(shù)列不等式例題 導(dǎo)數(shù)的應(yīng)用 (四)——構(gòu)造函數(shù)證明數(shù)列不等式 例1(選講或練習(xí)):求證1111+++…+ln(1+n)234n+1 例2.已知函數(shù)f(x)...
2024-10-26 14:31
【總結(jié)】......1、已知函數(shù)在上的最小值為,,是函數(shù)圖像上的兩點(diǎn),且線段的中點(diǎn)P的橫坐標(biāo)為.??(1)求證:點(diǎn)P的縱坐標(biāo)是定值;??(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列的前m項(xiàng)和
2025-03-26 05:41
【總結(jié)】安徽省合肥一中2022屆文科數(shù)學(xué)考前講座鄭漢洲知識(shí)網(wǎng)絡(luò)構(gòu)建二、數(shù)列與不等式1、數(shù)列通項(xiàng)及求和主干知識(shí)整合1.?dāng)?shù)列通項(xiàng)求解的方法(1)公式法;(2)根據(jù)遞推關(guān)系求通項(xiàng)公式有:①疊加法;②疊乘法;③轉(zhuǎn)化法.(3)不完全歸納法即從特殊到一般的歸納法;(4
2025-01-14 19:27
【總結(jié)】第一篇:用放縮法證明與數(shù)列和有關(guān)的不等式 用放縮法證明與數(shù)列和有關(guān)的不等式 湖北省天門(mén)中學(xué)薛德斌 數(shù)列與不等式的綜合問(wèn)題常常出現(xiàn)在高考的壓軸題中,是歷年高考命題的熱點(diǎn),這類問(wèn)題能有效地考查學(xué)生綜...
2024-10-27 22:27
【總結(jié)】數(shù)列與不等式的綜合問(wèn)題 測(cè)試時(shí)間:120分鐘 滿分:150分解答題(本題共9小題,共150分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)1.[2016·銀川一模](本小題滿分15分)在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q(q≠1),且b2+S2=12,q=.(1)求an與bn;(2)證明:≤++…+&
2025-03-25 02:51
【總結(jié)】第一篇:放縮法(不等式、數(shù)列綜合應(yīng)用) “放縮法”證明不等式的基本策略 近年來(lái)在高考解答題中,常滲透不等式證明的內(nèi)容,而不等式的證明是高中數(shù)學(xué)中的一個(gè)難點(diǎn),它可以考察學(xué)生邏輯思維能力以及分析問(wèn)題和...
2024-10-29 04:33
【總結(jié)】本課件為基于精確校對(duì)的word書(shū)稿制作的“逐字編輯”課件,使用時(shí)欲修改課件,請(qǐng)雙擊對(duì)應(yīng)內(nèi)容,進(jìn)入可編輯狀態(tài)。如果有的公式雙擊后無(wú)法進(jìn)入可編輯狀態(tài),請(qǐng)單擊選中此公式,點(diǎn)擊右鍵、“切換域代碼”,即可進(jìn)入編輯狀態(tài)。修改后再點(diǎn)擊右鍵、“切換域代碼”,即可退出編輯狀態(tài)。個(gè)別學(xué)科的部分圖片不可編輯,特此說(shuō)明。專題三不等式、數(shù)列
2025-01-06 15:18
【總結(jié)】數(shù)列與不等式專題七n數(shù)列與不等式的綜合題是高考常見(jiàn)的試題.這類試題,對(duì)數(shù)列方面的考查多屬基礎(chǔ)知識(shí)和基本技能的層級(jí),而對(duì)不等式的考查,其口徑往往比較寬,難度的調(diào)控幅度比較大,有時(shí)達(dá)到很高的層級(jí).試題
2024-11-11 08:49
【總結(jié)】第一篇:利用導(dǎo)數(shù)證明不等式 利用導(dǎo)數(shù)證明不等式 例1.已知x0,求證:xln(1+x)分析:設(shè)f(x)=x-lnx。x?[0,+¥)??紤]到f(0)=0,要證不等式變?yōu)椋簒0時(shí),f(x)f...
2024-10-27 18:46
【總結(jié)】第一篇:構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對(duì)數(shù)(嚴(yán)格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2024-10-31 14:46
【總結(jié)】精品資源數(shù)列中的不等式恒成立不等式的恒成立問(wèn)題是學(xué)生較難理解和掌握的一個(gè)難點(diǎn),以數(shù)列為載體的不等式恒成立問(wèn)題的檔次更高、綜合性更強(qiáng),是高三第二輪復(fù)習(xí)中不可多得的一個(gè)專題.例1:(2003年新教材高考題改編題)設(shè)為常數(shù),數(shù)列的通項(xiàng)公式為,若對(duì)任意不等式恒成立,求的取值范圍.解:,故等價(jià)于. ① ⑴當(dāng)時(shí),①式即為 ,此式對(duì)恒成立,故.(注意小于最小值,為什么不能
2025-06-25 02:18
【總結(jié)】第一篇:放縮法證明“數(shù)列+不等式”問(wèn)題的兩條途徑 放縮法證明“數(shù)列+不等式”問(wèn)題的兩條途徑 數(shù)列與不等式的綜合問(wèn)題常常出現(xiàn)在高考的壓軸題中,是歷年命題的熱點(diǎn),解決這類問(wèn)題常常用到放縮法。用放縮法解...
2024-10-29 04:45
【總結(jié)】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件18《數(shù)列數(shù)列通項(xiàng)與數(shù)列中的不等式》一、基礎(chǔ)知識(shí).n有有關(guān)的命題:第一步:驗(yàn)證初始狀態(tài),即“n=n0時(shí)命題成立”;第二步:假設(shè)推理,即“假設(shè)n=k(k≥n0)時(shí)命題成立,由此出發(fā),推得n=k+1時(shí)命題也成立”.:21,0???aaa:注
2024-11-11 02:53